Advertisement

European Spine Journal

, Volume 22, Issue 10, pp 2219–2227 | Cite as

Hidden discoligamentous instability in cervical spine injuries: can quantitative motion analysis improve detection?

  • M. Mayer
  • J. Zenner
  • A. Auffarth
  • M. Blocher
  • M. Figl
  • H. Resch
  • H. Koller
Original Article

Abstract

Purpose

Recent literature shows that occult discoligamentous injuries still remain difficult to diagnose in the first instance. Thresholds as indicators for discoligamentous segmental instability were previously defined. But, since supine radiodiagnostic is prone to spontaneous reduction of a displaced injury, and even some highly unstable injuries reveal only slight radiographic displacement, these criteria might mislead in the traumatized patient. A highly accurate radiographic instrument to assess segmental motion is the computer-assisted quantitative motion analysis (QMA). The aim was to evaluate the applicability of the QMA in the setting of a traumatized patient.

Methods

Review of 154 patients with unstable cervical injuries C3–7. Seventeen patients (male/female: 1:5, age: 44.6 years) had history of initially hidden discoligamentous injuries without signs of neurologic impairment. Initial radiographs did not fulfill instability criteria by conventional analysis. Instability was identified by late subluxation/dislocation, persisting/increasing neck pain, and/or scheduled follow-up. For 16 patients plain lateral radiographs were subjected to QMA. QMA data derived were compared with normative data of 140 asymptomatic volunteers from an institutional database.

Results

Data analysis of measurements revealed mean spondylolisthesis of −1.0 mm (−3.7 to +3.4 mm), for segmental rotational angle mean angulation of −0.9° (−11.1° to +17.7°). Analysis of these figures indicated positive instability thresholds in 5 patients (31.3 %). Analysis of center of rotation (COR)-shifts was only accomplishable completely in 3/16 patients due to limited motion or inadequacy of radiographs. Two of these patients (12.5 %) showed a suspect shift of the COR.

Conclusions

Our data show a high rate of false negative results in cases of hidden discoligamentous injuries by using conventional radiographic analysis as well as QMA in plain lateral radiographs in a trauma setting. Despite the technical possibilities in a modern trauma center, our data and recent literature indicate a thorough clinical and radiographic follow-up of patients with cervical symptoms to avoid secondary complications from missed cervical spine injuries.

Keywords

Cervical spine Hidden discoligamentous injury Diagnostics Pathologic intervertebral motion Instability 

Notes

Acknowledgments

The authors thank Nicholas Wharton and Prof. John Hipp of Medical Metrics Inc., Houston, TX, USA for technical assistance and illustration of the COR analysis.

Conflict of interest

None.

References

  1. 1.
    Demetriades D, Charalambides K, Chahwan S, Hanpeter D, Alo K, Velmahos G, Murray J, Asensio J (2000) Nonskeletal cervical spine injuries: epidemiology and diagnostic pitfalls. J Trauma 48:724–727PubMedCrossRefGoogle Scholar
  2. 2.
    Hendey GW, Wolfson AB, Mower WR, Hoffman JR (2002) Spinal cord injury without radiographic abnormality: results of the National Emergency X-Radiography Utilization Study in blunt cervical trauma. J Trauma 53:1–4PubMedCrossRefGoogle Scholar
  3. 3.
    Grossman MD, Reilly PM, Gillett T, Gillett D (1999) National survey of the incidence of cervical spine injury and approach to cervical spine clearance in U.S. trauma centers. J Trauma 47:684–690PubMedCrossRefGoogle Scholar
  4. 4.
    Crim JR, Moore K, Brodke D (2001) Clearance of the cervical spine in multitrauma patients: the role of advanced imaging. Semin Ultrasound CT MR 22:283–305PubMedCrossRefGoogle Scholar
  5. 5.
    Barba CA, Taggert J, Morgan AS, Guerra J, Bernstein B, Lorenzo M, Gershon A, Epstein N (2001) A new cervical spine clearance protocol using computed tomography. J Trauma 51:652–656 (discussion 656–657)PubMedCrossRefGoogle Scholar
  6. 6.
    White AA, 3rd, Johnson RM, Panjabi MM, Southwick WO (1975) Biomechanical analysis of clinical stability in the cervical spine. Clin Orthop Relat Res 109:85–96PubMedCrossRefGoogle Scholar
  7. 7.
    Schlicke LH, White AA, 3rd, Panjabi MM, Pratt A, Kier L (1979) A quantitative study of vertebral displacement and angulation in the normal cervical spine under axial load. Clin Orthop Relat Res 140:47–49PubMedGoogle Scholar
  8. 8.
    Tomycz ND, Chew BG, Chang YF, Darby JM, Gunn SR, Nicholas DH, Ochoa JB, Peitzman AB, Schwartz E, Pape HC, Spiro RM, Okonkwo DO (2008) MRI is unnecessary to clear the cervical spine in obtunded/comatose trauma patients: the 4 year experience of a level I trauma center. J Trauma 64:1258–1263. doi: 10.1097/TA.0b013e318166d2bd PubMedCrossRefGoogle Scholar
  9. 9.
    Schuster R, Waxman K, Sanchez B, Becerra S, Chung R, Conner S, Jones T (2005) Magnetic resonance imaging is not needed to clear cervical spines in blunt trauma patients with normal computed tomographic results and no motor deficits. Arch Surg 140:762–766. doi: 10.1001/archsurg.140.8.762 PubMedCrossRefGoogle Scholar
  10. 10.
    Como JJ, Thompson MA, Anderson JS, Shah RR, Claridge JA, Yowler CJ, Malangoni MA (2007) Is magnetic resonance imaging essential in clearing the cervical spine in obtunded patients with blunt trauma? J Trauma 63:544–549. doi: 10.1097/TA.0b013e31812e51ae PubMedCrossRefGoogle Scholar
  11. 11.
    Reitman CA, Hipp JA, Nguyen L, Esses SI (2004) Changes in segmental intervertebral motion adjacent to cervical arthrodesis: a prospective study. Spine 29:E221–E226PubMedCrossRefGoogle Scholar
  12. 12.
    Hipp JWN (2008) Quantitative motion analysis (QMA) of motion preserving and fusion technologies for the spine. Elsevier, New YorkGoogle Scholar
  13. 13.
    Koller H, H. D, H. G, M. B, A. K (2005) The unstable traumatic Spondylolisthesis C2/3. Akt Traumatol 35. doi: 10.1055/s-2005-865960
  14. 14.
    Subramanian N, Reitman CA, Nguyen L, Hipp JA (2007) Radiographic assessment and quantitative motion analysis of the cervical spine after serial sectioning of the anterior ligamentous structures. Spine 32:518–526. doi: 10.1097/01.brs.0000256449.95667.13 PubMedCrossRefGoogle Scholar
  15. 15.
    Hwang H, Hipp JA, Ben-Galim P, Reitman CA (2008) Threshold cervical range-of-motion necessary to detect abnormal intervertebral motion in cervical spine radiographs. Spine 33:E261–E267. doi: 10.1097/BRS.0b013e31816b88a4 PubMedCrossRefGoogle Scholar
  16. 16.
    Taylor M, Hipp JA, Gertzbein SD, Gopinath S, Reitman CA (2007) Observer agreement in assessing flexion-extension X-rays of the cervical spine, with and without the use of quantitative measurements of intervertebral motion. Spine J 7:654–658. doi: 10.1016/j.spinee.2006.10.017 PubMedCrossRefGoogle Scholar
  17. 17.
    Brown T, Reitman CA, Nguyen L, Hipp JA (2005) Intervertebral motion after incremental damage to the posterior structures of the cervical spine. Spine 30:E503–E508PubMedCrossRefGoogle Scholar
  18. 18.
    Widder S, Doig C, Burrowes P, Larsen G, Hurlbert RJ, Kortbeek JB (2004) Prospective evaluation of computed tomographic scanning for the spinal clearance of obtunded trauma patients: preliminary results. J Trauma 56:1179–1184PubMedCrossRefGoogle Scholar
  19. 19.
    Wang JC, Hatch JD, Sandhu HS, Delamarter RB (1999) Cervical flexion and extension radiographs in acutely injured patients. Clin Orthop Relat Res 365:111–116PubMedCrossRefGoogle Scholar
  20. 20.
    Muchow RD, Resnick DK, Abdel MP, Munoz A, Anderson PA (2008) Magnetic resonance imaging (MRI) in the clearance of the cervical spine in blunt trauma: a meta-analysis. J Trauma 64:179–189. doi: 10.1097/01.ta.0000238664.74117.ac PubMedCrossRefGoogle Scholar
  21. 21.
    Benzel EC, Hart BL, Ball PA, Baldwin NG, Orrison WW, Espinosa MC (1996) Magnetic resonance imaging for the evaluation of patients with occult cervical spine injury. J Neurosurg 85:824–829. doi: 10.3171/jns.1996.85.5.0824 PubMedCrossRefGoogle Scholar
  22. 22.
    D’Alise MD, Benzel EC, Hart BL (1999) Magnetic resonance imaging evaluation of the cervical spine in the comatose or obtunded trauma patient. J Neurosurg 91:54–59PubMedGoogle Scholar
  23. 23.
    Geck MJ, Yoo S, Wang JC (2001) Assessment of cervical ligamentous injury in trauma patients using MRI. J Spinal Disord 14:371–377PubMedCrossRefGoogle Scholar
  24. 24.
    Ghanta MK, Smith LM, Polin RS, Marr AB, Spires WV (2002) An analysis of Eastern Association for the Surgery of Trauma practice guidelines for cervical spine evaluation in a series of patients with multiple imaging techniques. Am Surg 68:563–567 (discussion 567–568)PubMedGoogle Scholar
  25. 25.
    Stassen NA, Williams VA, Gestring ML, Cheng JD, Bankey PE (2006) Magnetic resonance imaging in combination with helical computed tomography provides a safe and efficient method of cervical spine clearance in the obtunded trauma patient. J Trauma 60:171–177. doi: 10.1097/01.ta.0000197647.44202.de PubMedCrossRefGoogle Scholar
  26. 26.
    Sanchez B, Waxman K, Jones T, Conner S, Chung R, Becerra S (2005) Cervical spine clearance in blunt trauma: evaluation of a computed tomography-based protocol. J Trauma 59:179–183PubMedCrossRefGoogle Scholar
  27. 27.
    Schoenfeld AJ, Bono CM, McGuire KJ, Warholic N, Harris MB (2010) Computed tomography alone versus computed tomography and magnetic resonance imaging in the identification of occult injuries to the cervical spine: a meta-analysis. J Trauma 68:109–113. doi: 10.1097/TA.0b013e3181c0b67a (discussion 113–104)PubMedCrossRefGoogle Scholar
  28. 28.
    Brandenstein D, Molinari RW, Rubery PT, Rechtine GR 2nd (2009) Unstable subaxial cervical spine injury with normal computed tomography and magnetic resonance initial imaging studies: a report of four cases and review of the literature. Spine 34:E743–E750. doi: 10.1097/BRS.0b013e3181b43ebb PubMedCrossRefGoogle Scholar
  29. 29.
    Weisskopf M, Bail H, Mack M, Stockle U, Hoffmann R (1999) Value of MRI in traumatic disco-ligament instability of the lower cervical spine. Unfallchirurg 102:942–948PubMedCrossRefGoogle Scholar
  30. 30.
    Goradia D, Linnau KF, Cohen WA, Mirza S, Hallam DK, Blackmore CC (2007) Correlation of MR imaging findings with intraoperative findings after cervical spine trauma. AJNR Am J Neuroradiol 28:209–215PubMedGoogle Scholar
  31. 31.
    Lifeso RM, Colucci MA (2000) Anterior fusion for rotationally unstable cervical spine fractures. Spine 25:2028–2034PubMedCrossRefGoogle Scholar
  32. 32.
    Malham GM, Ackland HM, Varma DK, Williamson OD (2009) Traumatic cervical discoligamentous injuries: correlation of magnetic resonance imaging and operative findings. Spine 34:2754–2759. doi: 10.1097/BRS.0b013e3181b6170b PubMedCrossRefGoogle Scholar
  33. 33.
    Horn EM, Lekovic GP, Feiz-Erfan I, Sonntag VK, Theodore N (2004) Cervical magnetic resonance imaging abnormalities not predictive of cervical spine instability in traumatically injured patients. Invited submission from the joint section meeting on disorders of the spine and peripheral nerves, March 2004. J Neurosurg Spine 1:39–42. doi: 10.3171/spi.2004.1.1.0039 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Mayer
    • 1
  • J. Zenner
    • 2
  • A. Auffarth
    • 1
  • M. Blocher
    • 1
  • M. Figl
    • 3
  • H. Resch
    • 1
  • H. Koller
    • 2
  1. 1.Department for Traumatology and Sports InjuriesParacelsus Medical University SalzburgSalzburgAustria
  2. 2.German Scoliosis CenterWerner-Wicker-Klinik Bad WildungenBad WildungenGermany
  3. 3.Department for TraumatologyGeneral Hospital TullnTullnAustria

Personalised recommendations