European Spine Journal

, Volume 22, Issue 8, pp 1820–1828 | Cite as

Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging

  • Sung M. Moon
  • Jonathon H. Yoder
  • Alexander C. Wright
  • Lachlan J. Smith
  • Edward J. Vresilovic
  • Dawn M. ElliottEmail author
Original Article



The cartilaginous endplate (CEP) is a thin layer of hyaline cartilage positioned between the vertebral endplate and nucleus pulposus (NP) that functions both as a mechanical barrier and as a gateway for nutrient transport into the disc. Despite its critical role in disc nutrition and degeneration, the morphology of the CEP has not been well characterized. The objective of this study was to visualize and report observations of the CEP three-dimensional morphology, and quantify CEP thickness using an MRI FLASH (fast low-angle shot) pulse sequence.


MR imaging of ex vivo human cadaveric lumbar spine segments (N = 17) was performed in a 7T MRI scanner with sequence parameters that were selected by utilizing high-resolution T1 mapping, and an analytical MRI signal model to optimize image contrast between CEP and NP. The CEP thickness at five locations along the mid-sagittal AP direction (center, 5 mm, 10 mm off-center towards anterior and posterior) was measured, and analyzed using two-way ANOVA and a post hoc Bonferonni test. For further investigation, six in vivo volunteers were imaged with a similar sequence in a 3T MRI scanner. In addition, decalcified and undecalcified histology was performed, which confirmed that the FLASH sequence successfully detected the CEP.


CEP thickness determined by MRI in the mid-sagittal plane across all lumbar disc levels and locations was 0.77 ± 0.24 mm ex vivo. The CEP thickness was not different across disc levels, but was thinner toward the center of the disc.


This study demonstrates the potential of MRI FLASH imaging for structural quantification of the CEP geometry, which may be developed as a technique to evaluate changes in the CEP with disc degeneration in future applications.


Cartilaginous endplate Endplate morphology Intervertebral disc Magnetic resonance imaging (MRI) 



This work is supported by NIH grants RC1 AR058450 and R01 AR050052.

Conflict of interest



  1. 1.
    Ferguson SJ, Steffen T (2003) Biomechanics of the aging spine. Eur Spine J 12:S97–103PubMedCrossRefGoogle Scholar
  2. 2.
    Adams MA, Dolan P (2005) Spine biomechanics. J Biomech 38:1972–1983PubMedCrossRefGoogle Scholar
  3. 3.
    Louma K, Riihimaki H, Luukkonen R et al (2000) Low back pain in relation to lumbar disc degeneration. Spine 24:487–492CrossRefGoogle Scholar
  4. 4.
    Peng B, Hou S, Wu W et al (2006) The pathogenesis and clinical significance of a high-intensity zone (HIZ) of lumbar intervertebral disc on MR imaging in the patient with discogenic low back pain. Eur Spine J 15:583–587PubMedCrossRefGoogle Scholar
  5. 5.
    Videman T, Nurminen M (2004) The occurrence of annular tears and their relation to lifetime back pain history: a cadaveric study using barium sulfate discography. Spine 29:2668–2676PubMedCrossRefGoogle Scholar
  6. 6.
    Raj PP (2008) Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Practice 8:18–44PubMedCrossRefGoogle Scholar
  7. 7.
    Roberts S, Menage J, Urban JPG (1989) Biomechanical and structural properties of the catilage end-plate and its relation to the intervertebral disc. Spine 14:166–174PubMedCrossRefGoogle Scholar
  8. 8.
    Francois RJ, Bywaters EGL, Aufdermaur M (1985) Illustrated glossary for spinal anatomy. Rheumatol Int 5:241–245PubMedCrossRefGoogle Scholar
  9. 9.
    Crock HV, Goldwasser M (1984) Anatomic studies of the circulation in the region of the vertebral end-plate in adult greyhound dogs. Spine 9:702–706PubMedCrossRefGoogle Scholar
  10. 10.
    Roberts S, Menage J, Einstein SM (1993) The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J Ortho Res 11:747–757CrossRefGoogle Scholar
  11. 11.
    Moore RJ (2000) The vertebral end-plate: what do we know? Eur Spine J 9:92–96PubMedCrossRefGoogle Scholar
  12. 12.
    Urban JPG, Roberts S (2003) Degeneration of the intervertebral disc. Arthr Res Therapy 5:120–130CrossRefGoogle Scholar
  13. 13.
    Grignon B, Grignon Y, Mainard D et al (2000) The structure of the cartilaginous end-plates in elder people. Surg Radiol Anat 22:13–19PubMedCrossRefGoogle Scholar
  14. 14.
    Bibby SRS, Jones DA, Lee RB et al (2001) The pathophysiology of the intervertebral disc. Joint Bone Spine 68:537–542PubMedCrossRefGoogle Scholar
  15. 15.
    Nachemson A, Lewin T, Maroudas A et al (1970) In vitro diffusion of dye through the end-plates and annulus fibrosus of human lumbar intervertebral discs. Acta Orthop Scand 41:589–607PubMedCrossRefGoogle Scholar
  16. 16.
    Roberts S, Urban JPG, Evans H et al (1996) Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 21:415–420PubMedCrossRefGoogle Scholar
  17. 17.
    Accadbled F, Laffosse J-M, Ambard D et al (2008) Influence of location, fluid flow direction, and tissue maturity on the macroscopic permeability of cerebral end plates. Spine 33:612–619PubMedCrossRefGoogle Scholar
  18. 18.
    Bernick S, Cailliet R (1982) Vertebral end-plate changes with aging of human vertebrae. Spine 7:97–102PubMedCrossRefGoogle Scholar
  19. 19.
    Benneker LM, Heini PF, Alini M et al (2005) Vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 30:167–173PubMedCrossRefGoogle Scholar
  20. 20.
    Martin MD, Boxell CM (2002) Pathophysiology of lumbar disc degeneration: a review of the literature. Neurosurg Focus 13:1–6CrossRefGoogle Scholar
  21. 21.
    Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31:2151–2161PubMedCrossRefGoogle Scholar
  22. 22.
    Ariga K, Miyamoto S, Nakase T et al (2001) The relationship between apoptosis of endplate chondrocytes and aging and degeneration of the intervertebral disc. Spine 26:2414–2420PubMedCrossRefGoogle Scholar
  23. 23.
    Lyons G, Einstein SM, Sweet MBE (1981) Biochemical changes in intervertebral disc degeneration. Biochimica et Biophys Acta 673:443–453CrossRefGoogle Scholar
  24. 24.
    Antoniu J, Mwale F, Demers CN et al (2006) Quantitative magnetic resonance imaging of enzymatically induced degeneration of the nucleus pulposus of intervertebral discs. Spine 31:1547–1554CrossRefGoogle Scholar
  25. 25.
    Pfirrmann CWA, Metzdorf A, Elfering A et al (2006) Effect of aging and degeneration on disc volume and shape: a quantitative study in asymptomatic volunteers. J Ortho Res 24:1086–1094CrossRefGoogle Scholar
  26. 26.
    Johannessen W, Auerbach JD, Wheaton AJ et al (2006) Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging. Spine 31:1253–1257PubMedCrossRefGoogle Scholar
  27. 27.
    Blumenkrantz G, Zuo J, Li X et al (2010) In vivo 3.0-Tesla magnetic resonance T1rho and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms. Magn Reson Med 63:1193–1200PubMedCrossRefGoogle Scholar
  28. 28.
    Haase A, Frahm J, Matthaei D et al (1986) FLASH imaging. Rapid NMR imaging using low flip-angle pulses. JMR 67(2):258–266Google Scholar
  29. 29.
    Gatehouse PD, He T, Hughes SPF et al (2004) MR imaging of degenerative disc disease in the lumbar spine with ultrashort TE pulse sequences. MAGMA 16:160–166PubMedCrossRefGoogle Scholar
  30. 30.
    Dathe H, Helms G (2010) Exact algebraization of the signal equation of spoiled gradient echo MRI. Phys Med Biol 55:4231–4245PubMedCrossRefGoogle Scholar
  31. 31.
    Helms G, Dathe H, Dechent P (2008) Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation. Magn Reson Med 59:667–672PubMedCrossRefGoogle Scholar
  32. 32.
    Iatridis JC, Setton LA, Weidenbaum M et al (1997) The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. J Biomech 30(10):1005–1013PubMedCrossRefGoogle Scholar
  33. 33.
    Rodriguez AG, Slichter CK, Acosta FL et al (2011) Human disc nucleus properties and vertebral endplate permeability. Spine 36(7):512–520PubMedCrossRefGoogle Scholar
  34. 34.
    O’Connell GD, Vresilovic EJ, Elliott DM (2011) Human intervertebral disc internal strain in compression: the effect of disc region, loading position, and degeneration. J Orthop Res 29(4):547–555PubMedCrossRefGoogle Scholar
  35. 35.
    Wright AC, Lemdiasov R, Connick TJ et al (2011) Helmholtz-pair transmit coil with integrated receive array for high-resolution MRI of trabecular bone in the distal tibia at 7T. J Magn Reson 210:113–122PubMedCrossRefGoogle Scholar
  36. 36.
    Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digital Imaging 17:205–216CrossRefGoogle Scholar
  37. 37.
    Bae WC, Statum S, Zhang Z et al (2013) Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging. Radiology 266(2):564–574PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sung M. Moon
    • 1
    • 5
  • Jonathon H. Yoder
    • 1
  • Alexander C. Wright
    • 2
  • Lachlan J. Smith
    • 1
  • Edward J. Vresilovic
    • 3
  • Dawn M. Elliott
    • 4
    Email author
  1. 1.Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Orthopaedics and RehabilitationPenn State UniversityHersheyUSA
  4. 4.Department of Biomedical EngineeringUniversity of DelawareNewarkUSA
  5. 5.MR SystemsGE HealthcareFlorenceUSA

Personalised recommendations