Advertisement

European Spine Journal

, Volume 23, Supplement 3, pp 344–353 | Cite as

Biochemical composition and turnover of the extracellular matrix of the normal and degenerate intervertebral disc

  • Sarit Sara Sivan
  • Anthony J. Hayes
  • Ellen Wachtel
  • Bruce Caterson
  • Yulia Merkher
  • Alice Maroudas
  • Sharon Brown
  • Sally Roberts
Review article

Abstract

Background

The intervertebral disc (IVD) is a complex cartilaginous structure which functions to resist biomechanical loads during spinal movement. It consists of the highly viscous cartilaginous nucleus pulposus, which is surrounded laterally by a thick outer ring of fibrous cartilage—the annulus fibrosus—and sandwiched inferiorly and superiorly by the cartilage end-plates. The main extracellular matrix molecules of the disc are collagens, proteoglycans, glycoproteins and elastin. The disc also contains appreciable amounts of water, matrix-degrading protease enzymes and their inhibitors, soluble signalling molecules and various metabolic breakdown products.

Methods

This review provides a comprehensive description of the biochemical composition of the extracellular matrix of the IVD and, specifically, the proteases involved in its molecular turnover. Quantitation of the turnover rates using racemization of aspartic acid as a molecular clock is also discussed.

Conclusions

Molecular turnover rates of the major constituent matrix macromolecules of the IVD are found to be particularly slow, especially in the case of collagen. Over a normal human life span, this slow turnover may compromise the structural integrity of the IVD extracellular matrix essential for normal physiological functioning.

Keywords

Intervertebral disc Turnover of extracellular matrix Collagen Elastin Proteoglycans Matrix metalloproteinases Aspartic acid racemization 

Notes

Acknowledgments

Authors would like to thank Dr. Michelle Kumin for her help and suggestions in writing this article. They are grateful to EA Kerr and J Menage for help in preparation of the manuscript. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7, 2007–2013) under grant agreement no. HEALTH-F2-2008-201626 (Genodisc) and FP7-People-2007-2-2-ERG (grant agreement 224834). A.M.S.S. and Y.M acknowledge support from the Charles W. McCutchen Foundation.

Conflict of interest

None.

References

  1. 1.
    Sivakamasundari V, Lufkin T (2012) Bridging the gap: understanding embryonic intervertebral disc development. Cell Dev Biol 1:1000103Google Scholar
  2. 2.
    Donohue PJ, Jahnke MR, Blaha JD et al (1988) Characterization of link protein(s) from human intervertebral-disc tissues. Biochem J 251:739–747PubMedCentralPubMedGoogle Scholar
  3. 3.
    Eyre DR, Matsui Y, Wu JJ (2002) Collagen polymorphisms of the intervertebral disc. Biochem Soc Trans 30:844–848PubMedGoogle Scholar
  4. 4.
    Franklin L, Hull EW (1966) Lipid content of the intervertebral disc. Clin Chem 12:253–257PubMedGoogle Scholar
  5. 5.
    Oktay G, Guner A, Guner G et al (1995) Lipid analysis in human intervertebral disc material. Biochem Soc Trans 23:299SPubMedGoogle Scholar
  6. 6.
    Ricard-Blum S, Ruggiero F (2005) The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol Biol (Paris) 53:430–442Google Scholar
  7. 7.
    Gordon MK, Hahn RA (2010) Collagens. Cell Tissue Res 339:247–257PubMedCentralPubMedGoogle Scholar
  8. 8.
    Eyre DR (1988) Collagens of the disc. In: Ghosh P (ed) The biology of intervertebral disc. CRC Press, Boca Raton, pp 171–188Google Scholar
  9. 9.
    Eyre DR, Muir H (1976) Types I and II collagens in intervertebral disc. Interchanging radial distributions in annulus fibrosus. Biochem J 157:267–270PubMedCentralPubMedGoogle Scholar
  10. 10.
    Eyre DR, Muir H (1977) Quantitative analysis of types I and II collagens in human intervertebral discs at various ages. Biochim Biophys Acta 492:29–42PubMedGoogle Scholar
  11. 11.
    Roberts S, Menage J, Duance V, Volvo Award in basic sciences et al (1991) Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study. Spine (Phila Pa 1976) 16:1030–1038Google Scholar
  12. 12.
    Kempson GE, Muir H, Pollard C et al (1973) The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim Biophys Acta 297:456–472PubMedGoogle Scholar
  13. 13.
    Schmidt MB, Mow VC, Chun LE et al (1990) Effects of proteoglycan extraction on the tensile behavior of articular cartilage. J Orthop Res 8:353–363PubMedGoogle Scholar
  14. 14.
    Cole TC, Burkhardt D, Frost L et al (1985) The proteoglycans of the canine intervertebral disc. Biochim Biophys Acta 839:127–138PubMedGoogle Scholar
  15. 15.
    McDevitt C, Billingham M, Muir H (1981) In vivo metabolism of proteoglycans in experimental osteoarthritic and normal canine articular cartilage and the intervertebral discs. Semin Arthritis Rheum 11:17–18Google Scholar
  16. 16.
    Oegema TR Jr, Bradford DS, Cooper KM (1979) Aggregated proteoglycan synthesis in organ cultures of human nucleus pulposus. J Biol Chem 254:10579–10581PubMedGoogle Scholar
  17. 17.
    Venn G, Mason RM (1983) Biosynthesis and metabolism in vivo of intervertebral-disc proteoglycans in the mouse. Biochem J 215:217–225PubMedCentralPubMedGoogle Scholar
  18. 18.
    DiFabio JL, Pearce RH, Caterson B et al (1987) The heterogeneity of the non-aggregating proteoglycans of the human intervertebral disc. Biochem J 244:27–33PubMedCentralPubMedGoogle Scholar
  19. 19.
    Adams P, Muir H (1976) Qualitative changes with age of proteoglycans of human lumbar discs. Ann Rheum Dis 35:289–296PubMedCentralPubMedGoogle Scholar
  20. 20.
    Johnstone B, Bayliss MT (1995) The large proteoglycans of the human intervertebral disc. Changes in their biosynthesis and structure with age, topography, and pathology. Spine (Phila Pa 1976) 20:674–684Google Scholar
  21. 21.
    Adams P, Eyre DR, Muir H (1977) Biochemical aspects of development and ageing of human lumbar intervertebral discs. Rheumatol Rehabil 16:22–29PubMedGoogle Scholar
  22. 22.
    Urban J, Maroudas A (1980) The chemistry of the intervertebral disc in relation to its physiological function. Clin Rheum Dis 6:51–76Google Scholar
  23. 23.
    Hayes AJ, Isaacs MD, Hughes C et al (2011) Collagen fibrillogenesis in the development of the annulus fibrosus of the intervertebral disc. Eur Cell Mater 22:226–241PubMedGoogle Scholar
  24. 24.
    Jahnke MR, McDevitt CA (1988) Proteoglycans of the human intervertebral disc. Electrophoretic heterogeneity of the aggregating proteoglycans of the nucleus pulposus. Biochem J 251:347–356PubMedCentralPubMedGoogle Scholar
  25. 25.
    McDevitt C (1988) Proteoglycans of the intervertebral disc. In: Ghosh P (ed) The biology of the intervertebral disc. CRC Press, Boca Raton, pp 151–170Google Scholar
  26. 26.
    Bayliss MT, Johnstone B (1992) Biochemistry of the intervertebral disc. In: MIV J (ed) The Lumbar Spine and Back pain, 4th edn. Churchill Livingstone, London, pp 111–31Google Scholar
  27. 27.
    Oegema TR Jr (1993) Biochemistry of the intervertebral disc. Clin Sports Med 12:419–439PubMedGoogle Scholar
  28. 28.
    Roughley PJ, Melching LI, Heathfield TF et al (2006) The structure and degradation of aggrecan in human intervertebral disc. Eur Spine J 15(Suppl 3):S326–S332PubMedGoogle Scholar
  29. 29.
    Sivan SS, Tsitron E, Wachtel E et al (2006) Aggrecan turnover in human intervertebral disc as determined by the racemization of aspartic acid. J Biol Chem 281:13009–13014PubMedGoogle Scholar
  30. 30.
    Bushell GR, Ghosh P, Taylor TF et al (1977) Proteoglycan chemistry of the intervertebral disks. Clin Orthop Relat Res 129:115–123Google Scholar
  31. 31.
    Hayes AJ, Benjamin M, Ralphs JR (2001) Extracellular matrix in development of the intervertebral disc. Matrix Biol 20:107–121PubMedGoogle Scholar
  32. 32.
    Hayes AJ, Hughes CE, Ralphs JR et al (2011) Chondroitin sulphate sulphation motif expression in the ontogeny of the intervertebral disc. Eur Cell Mater 21:1–14PubMedGoogle Scholar
  33. 33.
    Caterson B (2012) Fell-Muir Lecture: chondroitin sulphate glycosaminoglycans: fun for some and confusion for others. Int J Exp Pathol 93:1–10PubMedCentralPubMedGoogle Scholar
  34. 34.
    Pearce RH, Grimmer BJ (1976) The chemical constitution of the proteoglycan of human intervertebral disc. Biochem J 157:753–763PubMedCentralPubMedGoogle Scholar
  35. 35.
    Antonopoulous C, L F, S G et al (1969) Fractionation of keratan sulphate from human nucleus pulposus. Acta Chem Scand 1:23Google Scholar
  36. 36.
    Choi HU, Meyer K (1975) The structure of keratan sulphates from various sources. Biochem J 151:543–553PubMedCentralPubMedGoogle Scholar
  37. 37.
    Heinegard D, Axelsson I, Inerot S (1979) Skeletal keratan sulfate from different tissues. Characterization and alkaline degradation. Biochim Biophys Acta 581:122–127PubMedGoogle Scholar
  38. 38.
    Eyre DR (1979) Biochemistry of the intervertebral disc. Int Rev Connect Tissue Res 8:227–291PubMedGoogle Scholar
  39. 39.
    Scott JE, Bosworth TR, Cribb AM et al (1994) The chemical morphology of age-related changes in human intervertebral disc glycosaminoglycans from cervical, thoracic and lumbar nucleus pulposus and annulus fibrosus. J Anat 184(Pt 1):73–82PubMedCentralPubMedGoogle Scholar
  40. 40.
    Melrose J, Smith S, Ghosh P et al (2003) Perlecan, the multidomain heparan sulfate proteoglycan of basement membranes, is also a prominent component of the cartilaginous primordia in the developing human fetal spine. J Histochem Cytochem 51:1331–1341PubMedGoogle Scholar
  41. 41.
    Hardingham TE, Adams P (1976) A method for the determination of hyaluronate in the presence of other glycosaminoglycans and its application to human intervertebral disc. Biochem J 159:143–147PubMedCentralPubMedGoogle Scholar
  42. 42.
    Inkinen RI, Lammi MJ, Agren U et al (1999) Hyaluronan distribution in the human and canine intervertebral disc and cartilage endplate. Histochem J 31:579–587PubMedGoogle Scholar
  43. 43.
    Johnson EF, Caldwell RW, Berryman HE et al (1984) Elastic fibres in the annulus fibrosus of the dog intervertebral disc. Acta Anat 118:238–242PubMedGoogle Scholar
  44. 44.
    Johnson EF, Chetty K, Moore IM et al (1982) The distribution and arrangement of elastic fibres in the intervertebral disc of the adult human. J Anat 135:301–309PubMedCentralPubMedGoogle Scholar
  45. 45.
    Buckwalter JA, Cooper RR, Maynard JA (1976) Elastic fibers in human intervertebral discs. J Bone Joint Surg Am 58:73–76PubMedGoogle Scholar
  46. 46.
    Ghosh P, Bushell GR, Taylor TF et al (1977) Collagens, elastin and noncollagenous protein of the intervertebral disk. Clin Orthop Relat Res 129:124–132Google Scholar
  47. 47.
    Yu J, Tirlapur U, Fairbank J et al (2007) Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc. J Anat 210:460–471PubMedCentralPubMedGoogle Scholar
  48. 48.
    Yu J, Winlove PC, Roberts S et al (2002) Elastic fibre organization in the intervertebral discs of the bovine tail. J Anat 201:465–475PubMedCentralPubMedGoogle Scholar
  49. 49.
    Hayes AJ, Lord MS, Smith SM et al (2011) Colocalization in vivo and association in vitro of perlecan and elastin. Histochem Cell Biol 136:437–454PubMedGoogle Scholar
  50. 50.
    Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115:2817–2828PubMedGoogle Scholar
  51. 51.
    Hynes RO, Yamada KM (1982) Fibronectins: multifunctional modular glycoproteins. J Cell Biol 95:369–377PubMedGoogle Scholar
  52. 52.
    Anderson DG, Markova D, Adams SL et al (2010) Fibronectin splicing variants in human intervertebral disc and association with disc degeneration. Spine (Phila Pa 1976) 35:1581–1588Google Scholar
  53. 53.
    Chen J, Jing L, Gilchrist CL et al (2009) Expression of laminin isoforms, receptors, and binding proteins unique to nucleus pulposus cells of immature intervertebral disc. Connect Tissue Res 50:294–306PubMedCentralPubMedGoogle Scholar
  54. 54.
    Hayes AJ, Smith SM, Gibson MA et al (2011) Comparative immunolocalization of the elastin fiber-associated proteins fibrillin-1, LTBP-2, and MAGP-1 with components of the collagenous and proteoglycan matrix of the fetal human intervertebral disc. Spine (Phila Pa 1976) 36:E1365–E1372Google Scholar
  55. 55.
    Li B, Urban JP, Yu J (2012) The distribution of fibrillin-2 and LTBP-2, and their co-localisation with fibrillin-1 in adult bovine tail disc. J Anat 220:164–172PubMedCentralPubMedGoogle Scholar
  56. 56.
    Schumacher BL, Block JA, Schmid TM et al (1994) A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch Biochem Biophys 311:144–152PubMedGoogle Scholar
  57. 57.
    Shine KM, Simson JA, Spector M (2009) Lubricin distribution in the human intervertebral disc. J Bone Joint Surg Am 91:2205–2212PubMedGoogle Scholar
  58. 58.
    Gruber HE, Ingram JA, Hanley EN, Jr (2006) Immunolocalization of thrombospondin in the human and sand rat intervertebral disc. Spine (Phila Pa 1976) 31:2556–2561Google Scholar
  59. 59.
    Ishii Y, Thomas AO, Guo XE et al (2006) Localization and distribution of cartilage oligomeric matrix protein in the rat intervertebral disc. Spine (Phila Pa 1976) 31:1539–1546Google Scholar
  60. 60.
    Gruber HE, Ingram JA, Hanley EN Jr (2002) Tenascin in the human intervertebral disc: alterations with aging and disc degeneration. Biotech Histochem 77:37–41PubMedGoogle Scholar
  61. 61.
    Mort JS, Caterson B, Poole AR et al (1985) The origin of human cartilage proteoglycan link-protein heterogeneity and fragmentation during aging. Biochem J 232:805–812PubMedCentralPubMedGoogle Scholar
  62. 62.
    Tengblad A, Pearce RH, Grimmer BJ (1984) Demonstration of link protein in proteoglycan aggregates from human intervertebral disc. Biochem J 222:85–92PubMedCentralPubMedGoogle Scholar
  63. 63.
    Pearce RH, Mathieson JM, Mort JS et al (1989) Effect of age on the abundance and fragmentation of link protein of the human intervertebral disc. J Orthop Res 7:861–867PubMedGoogle Scholar
  64. 64.
    Matsunaga S, Nagano S, Onishi T et al (2003) Age-related changes in expression of transforming growth factor-beta and receptors in cells of intervertebral discs. J Neurosurg 98:63–67PubMedGoogle Scholar
  65. 65.
    Murakami H, Yoon ST, Attallah-Wasif ES et al (2006) The expression of anabolic cytokines in intervertebral discs in age-related degeneration. Spine (Phila Pa 1976) 31:1770–1774Google Scholar
  66. 66.
    Dahia CL, Mahoney EJ, Durrani AA et al (2009) Intercellular signaling pathways active during intervertebral disc growth, differentiation, and aging. Spine (Phila Pa 1976) 34:456–462Google Scholar
  67. 67.
    Kondo N, Yuasa T, Shimono K et al (2011) Intervertebral disc development is regulated by Wnt/beta-catenin signaling. Spine (Phila Pa 1976) 36:E513–E518Google Scholar
  68. 68.
    Hayes AJ, Benjamin M, Ralphs JR (1999) Role of actin stress fibres in the development of the intervertebral disc: cytoskeletal control of extracellular matrix assembly. Dev Dyn 215:179–189PubMedGoogle Scholar
  69. 69.
    Weiler C, Nerlich AG, Zipperer J et al (2002) 2002 SSE Award Competition in Basic Science: expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J 11:308–320PubMedCentralPubMedGoogle Scholar
  70. 70.
    Murphy G, Nagase H (2011) Localizing matrix metalloproteinase activities in the pericellular environment. FEBS J 278:2–15PubMedCentralPubMedGoogle Scholar
  71. 71.
    Primakoff P, Myles DG (2000) The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet 16:83–87PubMedGoogle Scholar
  72. 72.
    Apte SS (2009) A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J Biol Chem 284:31493–31497PubMedCentralPubMedGoogle Scholar
  73. 73.
    Ariga K, Yonenobu K, Nakase T et al (2001) Localization of cathepsins D, K, and L in degenerated human intervertebral discs. Spine (Phila Pa 1976) 26:2666–2672Google Scholar
  74. 74.
    Melrose J, Ghosh P, Taylor TK (1987) Neutral proteinases of the human intervertebral disc. Biochim Biophys Acta 923:483–495PubMedGoogle Scholar
  75. 75.
    Tiaden AN, Klawitter M, Lux V et al (2012) Detrimental role for human high temperature requirement serine protease A1 (HTRA1) in the pathogenesis of intervertebral disc (IVD) degeneration. J Biol Chem 287:21335–21345PubMedCentralPubMedGoogle Scholar
  76. 76.
    Walter BA, Korecki CL, Purmessur D et al (2011) Complex loading affects intervertebral disc mechanics and biology. Osteoarthritis Cartilage 19:1011–1018PubMedCentralPubMedGoogle Scholar
  77. 77.
    Le Maitre CL, Freemont AJ, Hoyland JA (2005) The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 7:R732–R737PubMedCentralPubMedGoogle Scholar
  78. 78.
    Wang M, Tang D, Shu B et al (2012) Conditional activation of beta-catenin signaling in mice leads to severe defects in intervertebral disc tissue. Arthritis Rheum 64:2611–2623PubMedCentralPubMedGoogle Scholar
  79. 79.
    Razaq MS (2002) The effect of extracellular pH on cartilage tissue metabolism and turnover. University of Oxford, OxfordGoogle Scholar
  80. 80.
    Nachemson A (1969) Intradiscal measurements of pH in patients with lumbar rhizopathies. Acta Orthop Scand 40:23–42PubMedGoogle Scholar
  81. 81.
    Urban JP, Roberts S (2003) Degeneration of the intervertebral disc. Arthritis Res Ther 5:120–130PubMedCentralPubMedGoogle Scholar
  82. 82.
    Sztrolovics R, White RJ, Poole AR et al (1999) Resistance of small leucine-rich repeat proteoglycans to proteolytic degradation during interleukin-1-stimulated cartilage catabolism. Biochem J 339(Pt 3):571–577PubMedCentralPubMedGoogle Scholar
  83. 83.
    Roughley PJ, Alini M, Antoniou J (2002) The role of proteoglycans in aging, degeneration and repair of the intervertebral disc. Biochem Soc Trans 30:869–874PubMedGoogle Scholar
  84. 84.
    Dickson IR, Happey F, Pearson CH et al (1967) Variations in the protein components of human intervertebral disk with age. Nature 215:52–53PubMedGoogle Scholar
  85. 85.
    Banga I (1975) Investigations of fluorescent peptides and lipofuscins of human intervertebral disc relating to atherosclerosis. Atherosclerosis 22:533–541PubMedGoogle Scholar
  86. 86.
    Roberts S, Caterson B, Evans H et al (1994) Proteoglycan components of the intervertebral disc and cartilage endplate: an immunolocalization study of animal and human tissues. Histochem J 26:402–411PubMedGoogle Scholar
  87. 87.
    Inkinen RI, Lammi MJ, Lehmonen S et al (1998) Relative increase of biglycan and decorin and altered chondroitin sulfate epitopes in the degenerating human intervertebral disc. J Rheumatol 25:506–514PubMedGoogle Scholar
  88. 88.
    Liu J, Roughley PJ, Mort JS (1991) Identification of human intervertebral disc stromelysin and its involvement in matrix degradation. J Orthop Res 9:568–575PubMedGoogle Scholar
  89. 89.
    Crean JK, Roberts S, Jaffray DC et al (1997) Matrix metalloproteinases in the human intervertebral disc: role in disc degeneration and scoliosis. Spine (Phila Pa 1976) 22:2877–2884Google Scholar
  90. 90.
    Roberts S, Caterson B, Menage J et al (2000) Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine (Phila Pa 1976) 25:3005–3013Google Scholar
  91. 91.
    Le Maitre CL, Freemont AJ, Hoyland JA (2004) Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol 204:47–54PubMedGoogle Scholar
  92. 92.
    Pockert AJ, Richardson SM, Le Maitre CL et al (2009) Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration. Arthritis Rheum 60:482–491PubMedGoogle Scholar
  93. 93.
    Zhang Q, Huang M, Wang X et al (2012) Negative effects of ADAMTS-7 and ADAMTS-12 on endplate cartilage differentiation. J Orthop Res 30:1238–1243PubMedGoogle Scholar
  94. 94.
    Goode AP, Marshall SW, Kraus VB et al (2012) Association between serum and urine biomarkers and lumbar spine individual radiographic features: the Johnston County Osteoarthritis Project. Osteoarthritis Cartilage 20:1286–1293PubMedCentralPubMedGoogle Scholar
  95. 95.
    Melrose J, Smith SM, Fuller ES et al (2007) Biglycan and fibromodulin fragmentation correlates with temporal and spatial annular remodelling in experimentally injured ovine intervertebral discs. Eur Spine J 16:2193–2205PubMedCentralPubMedGoogle Scholar
  96. 96.
    Brown S, Melrose J, Caterson B et al (2012) A comparative evaluation of the small leucine-rich proteoglycans of pathological human intervertebral discs. Eur Spine J 21(Suppl 2):S154–S159PubMedGoogle Scholar
  97. 97.
    Bada JL (1984) In vivo racemization in mammalian proteins. Methods Enzymol 106:98–115PubMedGoogle Scholar
  98. 98.
    Helfman PM, Bada JL (1975) Aspartic acid racemization in tooth enamel from living humans. Proc Natl Acad Sci USA 72:2891–2894PubMedCentralPubMedGoogle Scholar
  99. 99.
    Bada JL, Kvenvolden KA, Peterson ET (1973) Racemization of amino acids in bones. Nature 245:308–310Google Scholar
  100. 100.
    Man EH, Sandhouse ME, Burg J et al (1983) Accumulation of d-aspartic acid with age in the human brain. Science 220:1407–1408PubMedGoogle Scholar
  101. 101.
    Powell JT, Vine N, Crossman M (1992) On the accumulation of D-aspartate in elastin and other proteins of the ageing aorta. Atherosclerosis 97:201–208PubMedGoogle Scholar
  102. 102.
    Ritz S, Schutz HW (1993) Aspartic acid racemization in intervertebral discs as an aid to postmortem estimation of age at death. J Forensic Sci 38:633–640PubMedGoogle Scholar
  103. 103.
    London IM, West R, Shemin D et al (1950) On the origin of bile pigment in normal man. J Biol Chem 184:351–358PubMedGoogle Scholar
  104. 104.
    Sivan SS, Wachtel E, Tsitron E et al (2008) Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J Biol Chem 283:8796–8801PubMedGoogle Scholar
  105. 105.
    Sivan SS, Van El B, Merkher Y et al (2012) Longevity of elastin in human intervertebral disc as probed by the racemization of aspartic acid. Biochim Biophys Acta 1820(10):1671–1677 Google Scholar
  106. 106.
    Maroudas A, Palla G, Gilav E (1992) Racemization of aspartic acid in human articular cartilage. Connect Tissue Res 28:161–169PubMedGoogle Scholar
  107. 107.
    Arany S, Ohtani S, Yoshioka N et al (2004) Age estimation from aspartic acid racemization of root dentin by internal standard method. Forensic Sci Int 141:127–130PubMedGoogle Scholar
  108. 108.
    Helfman PM, Bada JL (1976) Aspartic acid racemisation in dentine as a measure of ageing. Nature 262:279–281PubMedGoogle Scholar
  109. 109.
    Rufai A, Benjamin M, Ralphs JR (1995) The development of fibrocartilage in the rat intervertebral disc. Anat Embryol (Berl) 192:53–62Google Scholar
  110. 110.
    Wu JJ, Weis MA, Kim LS et al (2009) Differences in chain usage and cross-linking specificities of cartilage type V/XI collagen isoforms with age and tissue. J Biol Chem 284:5539–5545PubMedCentralPubMedGoogle Scholar
  111. 111.
    Nerlich AG, Schleicher ED, Boos N, Volvo Award winner in basic science studies (1997) Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine (Phila Pa 1976) 22:2781–2795Google Scholar
  112. 112.
    Wu JJ, Eyre DR, Slayter HS (1987) Type VI collagen of the intervertebral disc. Biochemical and electron-microscopic characterization of the native protein. Biochem J 248:373–381PubMedCentralPubMedGoogle Scholar
  113. 113.
    Boos N, Nerlich AG, Wiest I et al (1997) Immunolocalization of type X collagen in human lumbar intervertebral discs during ageing and degeneration. Histochem Cell Biol 108:471–480PubMedGoogle Scholar
  114. 114.
    Wu JJ, Eyre DR (2003) Intervertebral disc collagen. Usage of the short form of the alpha1(IX) chain in bovine nucleus pulposus. J Biol Chem 278:24521–24525PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sarit Sara Sivan
    • 1
  • Anthony J. Hayes
    • 2
  • Ellen Wachtel
    • 3
  • Bruce Caterson
    • 2
  • Yulia Merkher
    • 1
  • Alice Maroudas
    • 1
  • Sharon Brown
    • 4
  • Sally Roberts
    • 4
  1. 1.Department of Biomedical EngineeringTechnion, Israel Institute of TechnologyHaifaIsrael
  2. 2.School of BiosciencesCardiff UniversityCardiffWales, UK
  3. 3.Faculty of ChemistryWeizmann Institute of ScienceRehovotIsrael
  4. 4.Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust and ISTMKeele UniversityShropshireUK

Personalised recommendations