European Spine Journal

, Volume 22, Issue 7, pp 1509–1516 | Cite as

Reduction in range of cervical motion on serial long-term follow-up in patients undergoing oblique corpectomy for cervical spondylotic myelopathy

  • Mazda K. Turel
  • Sauradeep Sarkar
  • Krishna Prabhu
  • Roy T. Daniel
  • K. S. Jacob
  • Ari G. ChackoEmail author
Original Article



To determine whether motion preservation following oblique cervical corpectomy (OCC) for cervical spondylotic myelopathy (CSM) persists with serial follow-up.


We included 28 patients with preoperative and at least two serial follow-up neutral and dynamic cervical spine radiographs who underwent OCC for CSM. Patients with an ossified posterior longitudinal ligament (OPLL) were excluded. Changes in sagittal curvature, segmental and whole spine range of motion (ROM) were measured. Nathan’s system graded anterior osteophyte formation. Neurological function was measured by Nurick’s grade and modified Japanese Orthopedic Association (JOA) scores.


The majority (23 patients) had a single or 2-level corpectomy. The average duration of follow-up was 45 months. The Nurick’s grade and the JOA scores showed statistically significant improvements after surgery (p < 0.001). 17 % of patients with preoperative lordotic spines had a loss of lordosis at last follow-up, but with no clinical worsening. 77 % of the whole spine ROM and 62 % of segmental ROM was preserved at last follow-up. The whole spine and segmental ROM decreased by 11.2° and 10.9°, respectively (p ≤ 0.001). Patients with a greater range of segmental movement preoperatively had a statistically greater range of movement at follow-up. The analysis of serial radiographs indicated that the range of movement of the whole spine and the range of movement at the segmental spine levels significantly reduced during the follow-up period. Nathan’s grade showed increase in osteophytosis in more than two-thirds of the patients (p ≤ 0.01). The whole spine range of movement at follow-up significantly correlated with Nathan’s grade.


Although the OCC preserves segmental and whole spine ROM, serial measurements show a progressive decrease in ROM albeit without clinical worsening. The reduction in this ROM is probably related to degenerative ossification of spinal ligaments.


Cervical spondylotic myelopathy Oblique corpectomy Motion preservation Range of motion Cervical spine 



Cervical spondylotic myelopathy


General electric


Japanese Orthopedic Association


Magnetic resonance imaging


Oblique cervical corpectomy


Ossified posterior longitudinal ligament


Picture archival and retrieval system


Range of movement


Vertebral artery



The authors would like to acknowledge Debashree Turel and Dr K. Srinivas Babu for their assistance in the artwork.

Conflict of interest

The authors report no financial support or conflict of interest.


  1. 1.
    Liu Y, Qi M, Chen H, Yang L, Wang X, Shi G, Gao R, Wang C, Yuan W (2012) Comparative analysis of complications of different reconstructive techniques following anterior decompression for multilevel cervical spondylotic myelopathy. Eur Spine J 21(12):2428–2435. doi: 10.1007/s00586-012-2323-y PubMedCrossRefGoogle Scholar
  2. 2.
    Rajshekhar V, Muliyil J (2007) Patient perceived outcome after central corpectomy for cervical spondylotic myelopathy. Surg Neurol 68:185–190. doi: 10.1016/j.surneu.2006.10.071 discussion 190-181PubMedCrossRefGoogle Scholar
  3. 3.
    Houten JK, Cooper PR (2003) Laminectomy and posterior cervical plating for multilevel cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament: effects on cervical alignment, spinal cord compression, and neurological outcome. Neurosurgery 52:1081–1097. doi: 10.1227/01.NEU.0000057746.74779.55 PubMedCrossRefGoogle Scholar
  4. 4.
    Song KJ, Lee KB, Song JH (2012) Efficacy of multilevel anterior cervical discectomy and fusion versus corpectomy and fusion for multilevel cervical spondylotic myelopathy: a minimum 5-year follow-up study. Eur Spine J 21(8):1551–1557. doi: 10.1007/s00586-012-2296-x PubMedCrossRefGoogle Scholar
  5. 5.
    Costa F, Tomei M, Sassi M, Cardia A, Ortolina A, Servello D, Fornari M (2012) Evaluation of the rate of decompression in anterior cervical corpectomy using an intra-operative computerized tomography scan (O-Arm system). Eur Spine J 21(2):359–363. doi: 10.1007/s00586-011-2028-7 PubMedCrossRefGoogle Scholar
  6. 6.
    Lin Q, Zhou X, Wang X, Cao P, Tsai N, Yuan W (2011) A comparison of anterior cervical discectomy and corpectomy in patients with multilevel cervical spondylotic myelopathy. Eur Spine J 21(3):474–481. doi: 10.1007/s00586-011-1961-9 PubMedCrossRefGoogle Scholar
  7. 7.
    Kristof RA, Kiefer T, Thudium M, Ringel F, Stoffel M, Kovacs A, Mueller CA (2009) Comparison of ventral corpectomy and plate-screw-instrumented fusion with dorsal laminectomy and rod-screw-instrumented fusion for treatment of at least two vertebral-level spondylotic cervical myelopathy. Eur Spine J 18(12):1951–1956. doi: 10.1007/s00586-009-1110-x PubMedCrossRefGoogle Scholar
  8. 8.
    Bruneau M, Cornelius JF, George B (2007) Multilevel oblique corpectomies: surgical indications and technique. Neurosurgery 61:106–112. doi: 10.1227/01.neu.0000289723.89588.72 discussion 112PubMedCrossRefGoogle Scholar
  9. 9.
    Chacko AG, Daniel RT (2007) Multilevel cervical oblique corpectomy in the treatment of ossified posterior longitudinal ligament in the presence of ossified anterior longitudinal ligament. Spine 32(20):E575–E580. doi: 10.1097/BRS.0b013e31814b84fe PubMedCrossRefGoogle Scholar
  10. 10.
    Chibbaro S, Mirone G, Makiese O, George B (2009) Multilevel oblique corpectomy without fusion in managing cervical myelopathy: long-term outcome and stability evaluation in 268 patients. J Neurosurg Spine 10(5):458–465. doi: 10.3171/2009.1.SPINE08186 PubMedCrossRefGoogle Scholar
  11. 11.
    Kiris T, Kilincer C (2008) Cervical spondylotic myelopathy treated by oblique corpectomy: a prospective study. Neurosurgery 62(3):674–682. doi: 10.1227/01.neu.0000317316.56235.a7 discussion 674–682PubMedCrossRefGoogle Scholar
  12. 12.
    Koc RK, Menku A, Akdemir H, Tucer B, Kurtsoy A, Oktem IS (2004) Cervical spondylotic myelopathy and radiculopathy treated by oblique corpectomies without fusion. Neurosurg Rev 27(4):252–258. doi: 10.1007/s10143-004-0322-0 PubMedCrossRefGoogle Scholar
  13. 13.
    Moses V, Daniel RT, Chacko AG (2010) The value of intraoperative ultrasound in oblique corpectomy for cervical spondylotic myelopathy and ossified posterior longitudinal ligament. Br J Neurosurg 24:518–525. doi: 10.3109/02688697.2010.504049 PubMedCrossRefGoogle Scholar
  14. 14.
    Turel MK, Chacko AG (2011) Delayed resolution of extensive T2-weighted intramedullary signal changes after oblique corpectomy for cervical spondylotic myelopathy. Br J Neurosurg 25(6):772–774. doi: 10.3109/02688697.2011.584989 PubMedCrossRefGoogle Scholar
  15. 15.
    Rocchi G, Caroli E, Salvati M, Delfini R (2005) Multilevel oblique corpectomy without fusion: our experience in 48 patients. Spine 30(17):1963–1969. doi: 10.1097/01.brs.0000176327.04725.1b PubMedCrossRefGoogle Scholar
  16. 16.
    George B, Gauthier N, Lot G (1999) Multisegmental cervical spondylotic myelopathy and radiculopathy treated by multilevel oblique corpectomies without fusion. Neurosurgery 44(1):81–90. doi: 10.1097/00006123-199901000-00046 PubMedCrossRefGoogle Scholar
  17. 17.
    Chacko AG, Joseph M, Turel MK, Prabhu K, Daniel RT, Jacob KS (2012) Multilevel oblique corpectomy for cervical spondylotic myelopathy preserves segmental motion. Eur Spine J 21(7):1360–1367. doi: 10.1007/S00586-011-2137-3 PubMedCrossRefGoogle Scholar
  18. 18.
    Nurick S (1972) The pathogenesis of the spinal cord disorder associated with cervical spondylosis. Brain 95(1):87. doi: 10.1093/brain/95.1.87 PubMedCrossRefGoogle Scholar
  19. 19.
    Benzel EC, Lancon J, Kesterson L, Hadden T (1991) Cervical laminectomy and dentate ligament section for cervical spondylotic myelopathy. J Spinal Disord Tech 4(3):286. doi: 10.1097/00002517-199109000-00005 CrossRefGoogle Scholar
  20. 20.
    Nathan H (1962) Osteophytes of the Vertebral Column An Anatomical Study of Their Development According to Age, Race, and Sex with Considerations as to Their Etiology and Significance. J Bone Joint Surg Am 44:243–268Google Scholar
  21. 21.
    Cagli S, Chamberlain RH, Sonntag VK, Crawford NR (2004) The biomechanical effects of cervical multilevel oblique corpectomy. Spine 29(13):1420–1427. doi: 10.1097/01.BRS.0000129896.80044.B6 PubMedCrossRefGoogle Scholar
  22. 22.
    Simpson AK, Biswas D, Emerson JW, Lawrence BD, Grauer JN (2008) Quantifying the effects of age, gender, degeneration, and adjacent level degeneration on cervical spine range of motion using multivariate analyses. Spine 33:183–186. doi: 10.1097/BRS.0b013e31816044e8 PubMedCrossRefGoogle Scholar
  23. 23.
    Choi D, Melcher R, Harms J, Crockard A (2010) Outcome of 132 operations in 97 patients with chordomas of the craniocervical junction and upper cervical spine. Neurosurgery 66(1):59–65. doi: 10.1227/01.NEU.0000362000.35742.3D PubMedCrossRefGoogle Scholar
  24. 24.
    Lee SE, Chung CK, Jahng TA (2012) Early development and progression of heterotopic ossification in cervical total disc replacement. J Neurosurg Spine 16(1):31–36. doi: 10.3171/2011.8.SPINE11303 PubMedCrossRefGoogle Scholar
  25. 25.
    Baba H, Furusawa N, Imura S, Kawahara N, Tsuchiya H, Tomita K (1993) Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine 18(15):2167–2173PubMedCrossRefGoogle Scholar
  26. 26.
    Shin DA, Yi S, Yoon DH, Kim KN, Shin HC (2009) Artificial disc replacement combined with fusion versus two-level fusion in cervical two-level disc disease. Spine 34(11):1153–1159. doi: 10.1097/BRS.0b013e31819c9d39 PubMedCrossRefGoogle Scholar
  27. 27.
    Vedantam A, Revanappa KK, Rajshekhar V (2011) Changes in the range of motion of the cervical spine and adjacent segments at ≥24 months after uninstrumented corpectomy for cervical spondylotic myelopathy. Acta Neurochir (Wien) 153(5):995–1001. doi: 10.1007/s00701-011-0986-5 CrossRefGoogle Scholar
  28. 28.
    Kadaňka Z, Bednařík J, Novotný O, Urbánek I, Dušek L (2011) Cervical spondylotic myelopathy: conservative versus surgical treatment after 10 years. Eur Spine J 20(9):1533–1538. doi: 10.1007/s00586-011-1811-9 PubMedCrossRefGoogle Scholar
  29. 29.
    Nakamura K, Kurokawa T, Hoshino Y, Saita K, Takeshita K, Kawaguchi H (1998) Conservative Treatment for Cervical Spondylotic Myelopathy: achievement and Sustainability of a Level of “No Disability”. J Spinal Disord 11(2):175–179PubMedCrossRefGoogle Scholar
  30. 30.
    Upadhyaya CD, Wu JC, Trost G, Haid RW, Traynelis VC, Tay B, Coric D, Mummaneni PV (2012) Analysis of the three United States Food and Drug Administration investigational device exemption cervical arthroplasty trials. J Neurosurg Spine 16(3):216–228. doi: 10.3171/2011.6.SPINE10623 PubMedCrossRefGoogle Scholar
  31. 31.
    Goffin J, van Loon J, Van Calenbergh F, Plets C (1995) Long-term results after anterior cervical fusion and osteosynthetic stabilization for fractures and/or dislocations of the cervical spine. J Spinal Disord 8(6):500–508 discussion 499PubMedCrossRefGoogle Scholar
  32. 32.
    Richards O, Choi D, Timothy J (2012) Cervical arthroplasty: the beginning, the middle, the end? Br J Neurosurg 26(1):2–6. doi: 10.3109/02688697.2011.595846 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mazda K. Turel
    • 1
  • Sauradeep Sarkar
    • 1
  • Krishna Prabhu
    • 1
  • Roy T. Daniel
    • 1
  • K. S. Jacob
    • 2
  • Ari G. Chacko
    • 1
    Email author
  1. 1.Section of Neurosurgery, Department of Neurological SciencesChristian Medical CollegeVelloreIndia
  2. 2.Department of PsychiatryChristian Medical CollegeVelloreIndia

Personalised recommendations