European Spine Journal

, Volume 21, Issue 11, pp 2115–2121 | Cite as

Schmorl’s nodes

  • Kwaku A. Kyere
  • Khoi D. Than
  • Anthony C. Wang
  • Shayan U. Rahman
  • Juan M. Valdivia–Valdivia
  • Frank La Marca
  • Paul Park
Review Article

Abstract

Introduction

First described in 1927, a Schmorl’s node (SN) is the herniation of nucleus pulposus (NP) through the cartilaginous and bony end plate into the body of the adjacent vertebra. SNs are common findings on imaging, and although most SNs are asymptomatic, some have been shown to become painful lesions. In this manuscript, we review the literature regarding the epidemiology, clinical presentation, pathogenesis, imaging, and management of SNs.

Materials and methods

Using databases from the US National Library of Medicine and the National Institutes of Health, relevant articles were identified.

Results

While several theories regarding the pathogenesis of SNs have been proposed, an axial load model appears to have the greatest supporting evidence. Symptomatic SNs are thought to be due to the inflammatory response solicited by the herniation of NP into the well-vascularized vertebral body. Management options for symptomatic SNs vary, ranging from medical management to surgical fusion.

Conclusion

SNs are common lesions that are often asymptomatic. In certain cases, SNs can cause back pain. No consensus on pathogenesis exists. There is no established treatment modality for symptomatic SNs.

Keywords

Schmorl’s node Review Spine 

Notes

Acknowledgments

The authors would like to thank Holly Wagner for providing editorial assistance in the preparation of this manuscript.

Conflict of interest

The authors have no conflicts of interest or financial disclosures to declare. No intra- or extramural funding was received to generate this study.

References

  1. 1.
    Schmorl G (1927) Uber die an den wirbelbandscheiben vorkommenden ausdehnungs–und zerreisungsvorgange und die dadurch an ihnen und der wirbelspongiosa hervorgerufenen veranderungen. Verh Dtsch Path Ges 22:250Google Scholar
  2. 2.
    Schmorl G, Junghanns H (1971) The human spine in health and disease, 2nd edn. Grune and Stratton, New YorkGoogle Scholar
  3. 3.
    Williams FM, Manek NJ, Sambrook PN, Spector TD, Macgregor AJ (2007) Schmorl’s nodes: common, highly heritable, and related to lumbar disc disease. Arthritis Rheum 57:855–860. doi:10.1002/art.22789 PubMedCrossRefGoogle Scholar
  4. 4.
    Coventry MB, Ghormley RK, Kernohan JW (1945) The intervertebral disc: its microscopic anatomy and pathology. Part I. Anatomy, development, and physiology. J Bone Joint Surg Am 27:105–112Google Scholar
  5. 5.
    Hilton RC, Ball J, Benn RT (1976) Vertebral end-plate lesions (Schmorl’s nodes) in the dorsolumbar spine. Ann Rheum Dis 35:127–132PubMedCrossRefGoogle Scholar
  6. 6.
    Keyes DC, Compere EL (1932) The normal and pathological physiology of the nucleus pulposus of the intervertebral disc: an anatomical, clinical, and experimental study. J Bone Joint Surg Am 14:897–938Google Scholar
  7. 7.
    Fahey V, Opeskin K, Silberstein M, Anderson R, Briggs C (1998) The pathogenesis of Schmorl’s nodes in relation to acute trauma. An autopsy study. Spine (Phila Pa 1976) 23:2272–2275Google Scholar
  8. 8.
    Zhang N, Li FC, Huang YJ, Teng C, Chen WS (2010) Possible key role of immune system in Schmorl’s nodes. Med Hypotheses 74:552–554. doi:10.1016/j.mehy.2009.09.044 PubMedCrossRefGoogle Scholar
  9. 9.
    Takahashi K, Miyazaki T, Ohnari H, Takino T, Tomita K (1995) Schmorl’s nodes and low-back pain. Analysis of magnetic resonance imaging findings in symptomatic and asymptomatic individuals. Eur Spine J 4:56–59PubMedCrossRefGoogle Scholar
  10. 10.
    Vernon-Roberts B, Moore RJ, Fraser RD (2007) The natural history of age-related disc degeneration: the pathology and sequelae of tears. Spine (Phila Pa 1976) 32:2797–2804. doi:10.1097/BRS.0b013e31815b64d2
  11. 11.
    Pfirrmann CW, Resnick D (2001) Schmorl nodes of the thoracic and lumbar spine: radiographic-pathologic study of prevalence, characterization, and correlation with degenerative changes of 1,650 spinal levels in 100 cadavers. Radiology 219:368–374PubMedGoogle Scholar
  12. 12.
    Coventry MB, Ghormley RK, Kernohan JW (1945) The intervertebral disc: its microscopic anatomy and pathology. Part III. Pathological changes in the intervertebral disc. J Bone Joint Surg Am 27:460–474Google Scholar
  13. 13.
    Moore KL (1988) The developing human: clinically oriented embryology. Saunders, PhiladelphiaGoogle Scholar
  14. 14.
    Hamanishi C, Kawabata T, Yosii T, Tanaka S (1994) Schmorl’s nodes on magnetic resonance imaging. Their incidence and clinical relevance. Spine (Phila Pa 1976) 19:450–453Google Scholar
  15. 15.
    Jang JS, Kwon HK, Lee JJ, Hwang SM, Lim SY (2010) Rami communicans nerve block for the treatment of symptomatic Schmorl’s nodes—a case report. Korean J Pain 23(4):262–265. doi:10.3344/kjp PubMedCrossRefGoogle Scholar
  16. 16.
    Park P, Tran NK, Gala VC, Hoff JT, Quint DJ (2007) The radiographic evolution of a Schmorl’s node. Br J Neurosurg 21:224–227. doi:10.1080/02688690701317169 PubMedCrossRefGoogle Scholar
  17. 17.
    Sakellariou GT, Chatzigiannis I, Tsitouridis I (2005) Infliximab infusions for persistent back pain in two patients with Schmorl’s nodes. Rheumatology (Oxford) 44:1588–1590. doi:10.1093/rheumatology/kei155 CrossRefGoogle Scholar
  18. 18.
    Yaszemski MJ, White AA, Panjabi MM (1992) Biomechanics of the spine. In: Frankel HL (ed) Handbook of clinical neurology, vol 17. Elsevier Science Publishers, AmsterdamGoogle Scholar
  19. 19.
    Sward L, Hellstrom M, Jacobsson B, Nyman R, Peterson L (1991) Disc degeneration and associated abnormalities of the spine in elite gymnasts. A magnetic resonance imaging study. Spine (Phila Pa 1976) 16:437–443Google Scholar
  20. 20.
    Dar G, Masharawi Y, Peleg S, Steinberg N, May H, Medlej B, Peled N, Hershkovitz I (2010) Schmorl’s nodes distribution in the human spine and its possible etiology. Eur Spine J 19:670–675. doi:10.1007/s00586-009-1238-8 PubMedCrossRefGoogle Scholar
  21. 21.
    Singer KP, Breidahl PD, Day RE (1988) Variations in zygapophyseal joint orientation and level of transition at the thoracolumbar junction. Preliminary survey using computed tomography. Surg Radiol Anat 10:291–295PubMedCrossRefGoogle Scholar
  22. 22.
    Cyron BM, Hutton WC (1980) Articular tropism and stability of the lumbar spine. Spine (Phila Pa 1976) 5:168–172Google Scholar
  23. 23.
    Lehto IJ, Tertti MO, Komu ME, Paajanen HE, Tuominen J, Kormano MJ (1994) Age-related MRI changes at 0.1 T in cervical discs in asymptomatic subjects. Neuroradiology 36:49–53PubMedCrossRefGoogle Scholar
  24. 24.
    Matsumoto M, Fujimura Y, Suzuki N, Nishi Y, Nakamura M, Yabe Y, Shiga H (1998) MRI of cervical intervertebral discs in asymptomatic subjects. J Bone Joint Surg Br 80:19–24PubMedCrossRefGoogle Scholar
  25. 25.
    Kjaer P, Leboeuf-Yde C, Korsholm L, Sorensen JS, Bendix T (2005) Magnetic resonance imaging and low back pain in adults: a diagnostic imaging study of 40-year-old men and women. Spine (Phila Pa 1976) 30:1173–1180Google Scholar
  26. 26.
    Carlson B (1999) Human embryology & developmental biology, 2nd edn. Mosby, St. LouisGoogle Scholar
  27. 27.
    Wenger M, Markwalder TM (2009) Fluoronavigation-assisted, lumbar vertebroplasty for a painful Schmorl node. J Clin Neurosci 16:1250–1251. doi:10.1016/j.jocn.2008.11.016 PubMedCrossRefGoogle Scholar
  28. 28.
    Seymour R, Williams LA, Rees JI, Lyons K, Lloyd DC (1998) Magnetic resonance imaging of acute intraosseous disc herniation. Clin Radiol 53:363–368PubMedCrossRefGoogle Scholar
  29. 29.
    Takayanagi H (2005) Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med (Berl) 83:170–179. doi:10.1007/s00109-004-0612-6 CrossRefGoogle Scholar
  30. 30.
    Peng B, Chen J, Kuang Z, Li D, Pang X, Zhang X (2009) Diagnosis and surgical treatment of back pain originating from endplate. Eur Spine J 18:1035–1040. doi:10.1007/s00586-009-0938-4 PubMedCrossRefGoogle Scholar
  31. 31.
    Hasegawa K, Ogose A, Morita T, Hirata Y (2004) Painful Schmorl’s node treated by lumbar interbody fusion. Spinal Cord 42:124–128. doi:10.1038/sj.sc.3101506 PubMedCrossRefGoogle Scholar
  32. 32.
    Igarashi T, Kikuchi S, Shubayev V, Myers RR (2000) 2000 Volvo Award winner in basic science studies: exogenous tumor necrosis factor-alpha mimics nucleus pulposus-induced neuropathology. Molecular, histologic, and behavioral comparisons in rats. Spine (Phila Pa 1976) 25:2975–2980Google Scholar
  33. 33.
    Olmarker K, Rydevik B (2001) Selective inhibition of tumor necrosis factor-alpha prevents nucleus pulposus-induced thrombus formation, intraneural edema, and reduction of nerve conduction velocity: possible implications for future pharmacologic treatment strategies of sciatica. Spine (Phila Pa 1976) 26:863–869Google Scholar
  34. 34.
    Karppinen J, Korhonen T, Malmivaara A, Paimela L, Kyllonen E, Lindgren KA, Rantanen P, Tervonen O, Niinimaki J, Seitsalo S, Hurri H (2003) Tumor necrosis factor-alpha monoclonal antibody, infliximab, used to manage severe sciatica. Spine (Phila Pa 1976) 28:750–753 (discussion 753–754)Google Scholar
  35. 35.
    Pilet B, Salgado R, Van Havenbergh T, Parizel PM (2009) Development of acute schmorl nodes after discography. J Comput Assist Tomogr 33:597–600. doi:10.1097/RCT.0b013e318188598b PubMedCrossRefGoogle Scholar
  36. 36.
    Bogduk N, Twomey LT (1997) Clinical anatomy of the lumbar spine and sacrum, 3rd edn. Churchill Livingstone, New YorkGoogle Scholar
  37. 37.
    Andersson GB (1999) Epidemiological features of chronic low-back pain. Lancet 354:581–585. doi:10.1016/s0140-6736(99)01312-4 PubMedCrossRefGoogle Scholar
  38. 38.
    Deyo RA, Weinstein JN (2001) Low back pain. N Engl J Med 344:363–370. doi:10.1056/nejm200102013440508 PubMedCrossRefGoogle Scholar
  39. 39.
    Jayson MI, Herbert CM, Barks JS (1973) Intervertebral discs: nuclear morphology and bursting pressures. Ann Rheum Dis 32:308–315PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Kwaku A. Kyere
    • 1
  • Khoi D. Than
    • 1
  • Anthony C. Wang
    • 1
  • Shayan U. Rahman
    • 1
  • Juan M. Valdivia–Valdivia
    • 1
  • Frank La Marca
    • 1
  • Paul Park
    • 1
  1. 1.Department of NeurosurgeryUniversity of MichiganAnn ArborUSA

Personalised recommendations