European Spine Journal

, 20:558 | Cite as

Equilibrium of the human body and the gravity line: the basics

  • J. C. Le Huec
  • R. Saddiki
  • J. Franke
  • J. Rigal
  • S. Aunoble
Review Article

Abstract

Introduction

Bipedalism is a distinguishing feature of the human race and is characterised by a narrow base of support and an ergonomically optimal position thanks to the appearance of lumbar and cervical curves.

Materials

The pelvis, adapted to bipedalism, may be considered as the pelvic vertebra connecting the spine to the lower limbs. Laterally, the body’s line of gravity is situated very slightly behind the femoral heads laterally, and frontally it runs through the middle of the sacrum at a point equidistant from the two femoral heads.

Results

Any abnormal change through kyphosis regarding the spinal curves results in compensation, first in the pelvis through rotation and then in the lower limbs via knee flexion. This mechanism maintains the line of gravity within the base of support but is not ergonomic. To analyse sagittal balance, we must thus define the parameters concerned and the relationships between them.

Conclusion

These parameters are as follows: for the pelvis: incidence angle, pelvis tilt, sacral slope; for the spine: point of inflexion, apex of lumbar lordosis, lumbar lordosis, spinal tilt at C7; for overall analysis: spino-sacral angle, which is an intrinsic parameter.

Keywords

Sagittal balance Gravity line Spino-sacral angle Incidence angle 

References

  1. 1.
    Berge C (2006) Du marcheur au coureur de fond. Historia mensuel 716:45–61Google Scholar
  2. 2.
    Skoyles JR (2006) Human balance, the evolution of bipedalism and disequilibrium syndrome. Med Hypotheses 66(6):1060–1068PubMedCrossRefGoogle Scholar
  3. 3.
    Berge C (1998) Heterochronic processes in human evolution: an ontogenetic analysis of the hominid pelvis. Am J Phys Anthropol 105(4):441–459PubMedCrossRefGoogle Scholar
  4. 4.
    Dubousset J, Charpak G, Skalli W, de Guise J, Kalifa G, Wicart P (2008) Skeletal and spinal imaging with EOS system. Arch Pediatr 15(5):665–666PubMedCrossRefGoogle Scholar
  5. 5.
    Duval-Beaupère G, Schmidt C, Cosson P (1992) A Barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20:451–462PubMedCrossRefGoogle Scholar
  6. 6.
    Vernazza S, Alexandrov A, Massion J (1996) Is the center of gravity controlled during upper trunk movements? Neurosci Lett 206(2–3):77–80PubMedCrossRefGoogle Scholar
  7. 7.
    Schwab F, Lafage V, Boyce R, Skalli W, Farcy JP (2006) Gravity line analysis in adult volunteers: age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine 31(25):E959–E967PubMedCrossRefGoogle Scholar
  8. 8.
    Roussouly P, Gollogly S, Noseda O, Berthonnaud E, Dimnet J (2006) The vertical projection of the sum of the ground reactive forces of a standing patient is not the same as the C7 plumb line: a radiographic study of the sagittal alignment of 153 asymptomatic volunteers. Spine 31(11):E320–E325PubMedCrossRefGoogle Scholar
  9. 9.
    During J, Goudfrooij H, Keessen W et al (1985) Toward standards for posture. Postural characteristics of the lower back system in normal and pathologic conditions. Spine 10:83–87PubMedCrossRefGoogle Scholar
  10. 10.
    Legaye J, Duval-Beaupère G, Hecquet J et al (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7:99–103PubMedCrossRefGoogle Scholar
  11. 11.
    Vaz G, Roussouly P, Berthonnaud E, Dimnet J (2002) Sagittal morphology and equilibrium of pelvis and spine. Eur Spine J 11(1):80–87PubMedCrossRefGoogle Scholar
  12. 12.
    Legaye J, Duval-Beaupere G, Hecquet J, Marty C (1998) The Incidence, fundamental pelvic parameter for the three-dimensional regulation of the spinal sagittal curves. Eur Spine J 7:99–103PubMedCrossRefGoogle Scholar
  13. 13.
    Mac-Thiong JM, Transfeldt EE, Mehbod AA, Perra JH, Denis F, Garvey TA, Lonstein JE, Wu C, Dorman CW, Winter RB (2009) Can C7 plumb line and gravity line predict health related quality of life in adult scoliosis? Spine 34(15):E519–E527PubMedCrossRefGoogle Scholar
  14. 14.
    El Fegoun AB, Schwab F, Gamez L, Champain N, Skalli W, Farcy JP (2005) Center of gravity and radiographic posture analysis: a preliminary review of adult volunteers and adult patients affected by scoliosis. Spine 30(13):1535–1540PubMedCrossRefGoogle Scholar
  15. 15.
    Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976) 30(3):346–353CrossRefGoogle Scholar
  16. 16.
    Roussouly P, Gollogly S, Noseda O, Berthonnaud E, Dimnet J (2006) The vertical projection of the sum of the ground reactive forces of a standing patient is not the same as the C7 plumb line: a radiographic study of the sagittal alignment of 153 asymptomatic volunteers. Spine (Phila Pa 1976) 31(11):E320–E325CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • J. C. Le Huec
    • 1
  • R. Saddiki
    • 1
  • J. Franke
    • 2
  • J. Rigal
    • 1
  • S. Aunoble
    • 1
  1. 1.Spine Unit 2, Surgical Research LabBordeaux University HospitalBordeauxFrance
  2. 2.Department of OrthopedicsUniversity of MagdeburgMagdeburgGermany

Personalised recommendations