European Spine Journal

, Volume 21, Supplement 5, pp 675–687 | Cite as

In silico evaluation of a new composite disc substitute with a L3–L5 lumbar spine finite element model

  • Jérôme NoaillyEmail author
  • Luigi Ambrosio
  • K. Elizabeth Tanner
  • Josep A. Planell
  • Damien Lacroix
Original Article


When the intervertebral disc is removed to relieve chronic pain, subsequent segment stabilization should restore the functional mechanics of the native disc. Because of partially constrained motions and the lack of intrinsic rotational stiffness ball-on-socket implants present many disadvantages. Composite disc substitutes mimicking healthy disc structures should be able to assume the role expected for a disc substitute with fewer restrictions than ball-on-socket implants. A biomimetic composite disc prototype including artificial nucleus fibre-reinforced annulus and endplates was modelled as an L4–L5 disc substitute within a L3–L5 lumbar spine finite element model. Different device updates, i.e. changes of material properties fibre distributions and volume fractions and nucleus placements were proposed. Load- and displacement-controlled rotations were simulated with and without body weight applied. The original prototype reduced greatly the flexibility of the treated segment with significant adjacent level effects under displacement-controlled or hybrid rotations. Device updates allowed restoring large part of the global axial and sagittal rotational flexibility predicted with the intact model. Material properties played a major role, but some other updates were identified to potentially tune the device behaviour against specific motions. All device versions altered the coupled intersegmental shear deformations affecting facet joint contact through contact area displacements. Loads in the bony endplates adjacent to the implants increased as the implant stiffness decreased but did not appear to be a strong limitation for the implant biomechanical and mechanobiological functionality. In conclusion, numerical results given by biomimetic composite disc substitutes were encouraging with greater potential than that offered by ball-on-socket implants.


Composite disc substitute Lumbar spine finite element modelling Adjacent level effects Biomechanics Body weight 



The authors are thankful to Dr. Roberto De Santis and Dr. Filippo Causa for the discussions about the original disc prosthesis prototype. Dr. David Eglin is also kindly acknowledged for his recommendations about alternative disc substitute materials. This research was funded by the European Commission under the DISC project (G5RD-2000-CT-00267) and by the Spanish Ministry for Science and Innovation under the grant AP2002-2395.

Conflict of interest



  1. 1.
    Chen SH, Zhong ZC, Chen CS, Chen WJ, Hung C (2009) Biomechanical comparison between lumbar disc arthroplasty and fusion. Med Eng Phys 31:244–253PubMedCrossRefGoogle Scholar
  2. 2.
    Chen WM, Park C, Lee K, Lee S (2009) In situ contact analysis of the prosthesis components of prodisc-L in lumbar spine following total disc replacement. Spine (Phila Pa 1976) 34:E716–E723CrossRefGoogle Scholar
  3. 3.
    Chung SK, Kim YE, Wang KC (2009) Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis. Spine (Phila Pa 1976) 34:1281–1286CrossRefGoogle Scholar
  4. 4.
    David T (2002) Indications complications and results with the SB Charité (TM) artificial disc. In: Kaech DL, Jinkins JR (eds) Spinal restabilization procedures. Elsevier Science, pp 311–316Google Scholar
  5. 5.
    Eberlein R, Holzapfel GA, Schultze-Bauer CAJ (2001) An anisotropic constitutive model for annulus tissue and enhanced finite element analysis of intact lumbar disc bodies. Comput Methods Biomech Biomed Eng 4:209–230CrossRefGoogle Scholar
  6. 6.
    Freeman BJ, Davenport J (2006) Total disc replacement in the lumbar spine: a systematic review of the literature. Eur Spine J 15(Suppl 3):S439–S447PubMedCrossRefGoogle Scholar
  7. 7.
    Gloria A, Causa F, De Santis R, Netti PA, Ambrosio L (2007) Dynamic-mechanical properties of a novel composite intervertebral disc prosthesis. J Mater Sci Mater Med 18:2159–2165PubMedCrossRefGoogle Scholar
  8. 8.
    Goel VK, Grauer JN, Patel TCh, Biyani A, Sairyo K, Vishnubhotla S, Matyas A, Cowgill I, Shaw M, Long R, Dick D, Panjabi MM, Serhan H (2005) Effects of Charité artificial disc on the implanted and adjacent segments mechanics using a hybrid testing protocol. Spine 30:2755–2764PubMedCrossRefGoogle Scholar
  9. 9.
    Goel VK, Wilder DG, Pope MH, Edwards WT (1995) Biomechanical testing of the spine. Load-controlled versus displacement-controlled analysis. Spine 20:2354–2357PubMedCrossRefGoogle Scholar
  10. 10.
    Gore DM, Higginson GR, Minns RJ (1983) Compliance of articular cartilage and its variations through the thickness. Phys Med Biol 28:233–247PubMedCrossRefGoogle Scholar
  11. 11.
    Grauer JN, Biyani A, Faizan A, Kiapour A, Sairyo K, Ivanov A, Ebraheim NA, Patel TC, Goel VK (2006) Biomechanics of two-level Charite artificial disc placement in comparison to fusion plus single-level disc placement combination. Spine J 6:659–666PubMedCrossRefGoogle Scholar
  12. 12.
    Guidoin MF, Marois Y, Bejui J, Poddevin N, King MW, Guidoin R (2000) Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials 21:2461–2474PubMedCrossRefGoogle Scholar
  13. 13.
    Guyer RD, McAfee PC, Banco RJ, Bitan FD, Cappuccino A, Geisler FH, Hochschuler SH, Holt RT, Jenis LG, Majd ME, Regan JJ, Tromanhauser SG, Wong DC, Blumenthal SL (2009) Prospective randomized multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: five-year follow-up. Spine J 9:374–386PubMedCrossRefGoogle Scholar
  14. 14.
    Harrop JS, Youssef JA, Maltenfort M, Vorwald P, Jabbour P, Bono CM, Goldfarb N, Vaccaro AR, Hilibrand AS (2008) Lumbar adjacent segment degeneration and disease after arthrodesis and total disc arthroplasty. Spine (Phila Pa 1976) 33:1701–1707CrossRefGoogle Scholar
  15. 15.
    Hou Y, Luo Z (2009) A study on the structural properties of the lumbar endplate: histological structure the effect of bone density and spinal level. Spine (Phila Pa 1976) 34:E427–E433CrossRefGoogle Scholar
  16. 16.
    Lacroix D, Prendergast PJ, Li G, Marsh D (2002) Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med Biol Eng Comput 40:14–21PubMedCrossRefGoogle Scholar
  17. 17.
    Langrana NA, Lee CK, Yang SW (1991) Finite element modelling of the synthetic intervertebral disc. Spine 16:S245–S252PubMedCrossRefGoogle Scholar
  18. 18.
    Malandrino A, Planell JA, Lacroix D (2009) Statistical factorial analysis on the poroelastic material properties sensitivity of the lumbar intervertebral disc under compression flexion and axial rotation. J Biomech 42:2780–2788PubMedCrossRefGoogle Scholar
  19. 19.
    McAfee PC (2002) Artificial disc prosthesis: the Link SB Charité III (TM). In: Kaech DL, Jinkins JR (eds) Spinal restabilization procedures. Elsevier Science, pp 299–310Google Scholar
  20. 20.
    Mixter WJ, Barr JS (1934) Rupture of the intervertebral disc with involvement of the spinal canal. N Engl J Med 211:210–215CrossRefGoogle Scholar
  21. 21.
    Moumene M, Geisler FH (2007) Comparison of biomechanical function at ideal and varied surgical placement for two lumbar artificial disc implant designs: mobile-core versus fixed-core. Spine 32:1840–1851PubMedCrossRefGoogle Scholar
  22. 22.
    Noailly J, Planell JA, Lacroix D (2010) On the collagen criss-cross angles in the annuli fibrosi of lumbar spine finite element models. Biomech Model Mechanobiol. doi: 10.1007/s10237-010-0227-5
  23. 23.
    Noailly J, Wilke HJ, Planell JA, Lacroix D (2007) How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process. J Biomech 40:2414–2425PubMedCrossRefGoogle Scholar
  24. 24.
    Noailly J (2009) Model developments for in silico studies of the lumbar spine biomechanics. PhD Thesis Technical University of Catalonia, Barcelona, SpainGoogle Scholar
  25. 25.
    Noailly J, Lacroix D, Planell JA (2005) Finite element study of a novel intervertebral disc substitute. Spine 30:2257–2264PubMedCrossRefGoogle Scholar
  26. 26.
    OpDeBeek R, Hermans V (2000) Research on work-related low back disorders. European Agency for Safety and Health at Work. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  27. 27.
    Oxland TR, Grant PJ, Dvorak MF, Fisher CG (2003) Effects of endplate removal on the structural properties of the lower lumbar vertebral bodies. Spine 28:771–777PubMedGoogle Scholar
  28. 28.
    Panjabi MM, Greenstein G, Duranceau J, Nolte L-P (1991) Three-dimensional quantitative morphology of lumbar spinal ligaments. J Spinal Disord 4:54–62PubMedGoogle Scholar
  29. 29.
    Panjabi MM, Oxland T, Takata K, Goel V, Duranceau J, Krag M (1993) Articular facets of the human spine. Quantitative three-dimensional anatomy. Spine 18:1298–1310PubMedCrossRefGoogle Scholar
  30. 30.
    Panjabi MM (2007) Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech (Bristol Avon) 22:257–265CrossRefGoogle Scholar
  31. 31.
    Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances A (1992) Biomechanical properties of human lumbar spine ligaments. J Biomech 25:1351–1356PubMedCrossRefGoogle Scholar
  32. 32.
    Podniece Z (2008) Work-related musculoskeletal disorders: prevention report. European Agency for Safety and Health at Work. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  33. 33.
    Putzier M, Funk JF, Schneider SV, Gross C, Tohtz SW, Khodadadyan-Klostermann C, Perka C, Kandziora F (2006) Charite total disc replacement–clinical and radiographical results after an average follow-up of 17 years. Eur Spine J 15:183–195PubMedCrossRefGoogle Scholar
  34. 34.
    Rao KCVG (1994) Anatomía. In: RM y TC de columna. Krishna C.V.G.Rao J.Powell Williams Benjamin C.P.Lee, John L.Sherman (eds) Editorial Marban S.L. (Edición en español)—Williams & Wilkins (English edition) Madrid (Edición en español)—Baltimore Maryland (English edition), pp 19–69Google Scholar
  35. 35.
    Rohlmann A, Mann A, Zander T, Bergmann G (2009) Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study. Eur Spine J 18:89–97PubMedCrossRefGoogle Scholar
  36. 36.
    Rohlmann A, Zander T, Rao M, Bergmann G (2009) Realistic loading conditions for upper body bending. J Biomech 42:884–890PubMedCrossRefGoogle Scholar
  37. 37.
    Schmidt H, Midderhoff S, Adkins K, Wilke HJ (2009) The effect of different design concepts in lumbar total disc arthroplasty on the range of motion facet joint forces and instantaneous center of rotation of a L4–5 segment. Eur Spine J 18:1695–1705PubMedCrossRefGoogle Scholar
  38. 38.
    Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986) A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech 19:331–350PubMedCrossRefGoogle Scholar
  39. 39.
    Siepe CJ, Korge A, Grochulla F, Mehren C, Mayer HM (2008) Analysis of post-operative pain patterns following total lumbar disc replacement: results from fluoroscopically guided spine infiltrations. Eur Spine J 17:44–56PubMedCrossRefGoogle Scholar
  40. 40.
    Sinigaglia R, Bundy A, Costantini S, Nena U, Finocchiaro F, Monterumici DA (2009) Comparison of single-level L4-L5 versus L5-S1 lumbar disc replacement: results and prognostic factors. Eur Spine J 18(Suppl 1):52–63PubMedCrossRefGoogle Scholar
  41. 41.
    Smit TH (1996) The mechanical significance of the trabecular bone architecture in a human vertebra. PhD Thesis Technical University of Hamburg-Harburg Aachen, GermanyGoogle Scholar
  42. 42.
    Tanner KE, Downes RN, Bonfield W (1994) Clinical application of hydroxyapatite reinforced polyethylene. British Ceramic Transactions 93:104–107Google Scholar
  43. 43.
    Keller TS, Colloca CJ, Harrison DE, Harrison DD, Janik TJ (2005) Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: implications for the ideal spine. Spine J 5:297–309PubMedCrossRefGoogle Scholar
  44. 44.
    Tulsi RS, Hermanis GM (1993) A study of the angle of inclination and facet curvature of superior lumbar zygapophyseal facets. Spine 18:1311–1317PubMedCrossRefGoogle Scholar
  45. 45.
    Whyne CM, Hu SS, Lotz JC (2001) Parametric finite element analysis of vertebral bodies affected by tumors. J Biomech 34:1317–1324PubMedCrossRefGoogle Scholar
  46. 46.
    Wilson DC, Niosi CA, Zhu QA, Oxland TR, Wilson DR (2006) Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine. J Biomech 39:348–353PubMedCrossRefGoogle Scholar
  47. 47.
    Zander T, Rohlmann A, Bergmann G (2009) Influence of different artificial disc kinematics on spine biomechanics. Clin Biomech (Bristol Avon) 24:135–142CrossRefGoogle Scholar
  48. 48.
    Zhong ZC, Chen SH, Hung CH (2009) Load- and displacement-controlled finite element analyses on fusion and non-fusion spinal implants. Proc Inst Mech Eng H 223:143–157PubMedCrossRefGoogle Scholar
  49. 49.
    Zigler J, Delamarter R, Spivak JM, Linovitz RJ, Danielson GO III, Haider TT, Cammisa F, Zuchermann J, Balderston R, Kitchel S, Foley K, Watkins R, Bradford D, Yue J, Yuan H, Herkowitz H, Geiger D, Bendo J, Peppers T, Sachs B, Girardi F, Kropf M, Goldstein J (2007) Results of the prospective randomized multicenter Food and Drug Administration investigational device exemption study of the ProDisc-L total disc replacement versus circumferential fusion for the treatment of 1-level degenerative disc disease. Spine (Phila Pa 1976) 32:1155–1162CrossRefGoogle Scholar
  50. 50.
    Zindrick MR, Tzermiadianos MN, Voronov LI, Lorenz M, Hadjipavlou A (2008) An evidence-based medicine approach in determining factors that may affect outcome in lumbar total disc replacement. Spine (Phila Pa 1976) 33:1262–1269CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jérôme Noailly
    • 1
    Email author
  • Luigi Ambrosio
    • 3
  • K. Elizabeth Tanner
    • 4
  • Josep A. Planell
    • 1
    • 2
  • Damien Lacroix
    • 1
  1. 1.Institute for Bioengineering of Catalonia Biomechanics and MechanobiologyBarcelonaSpain
  2. 2.Department of Material Sciences and Metallurgical EngineeringTechnical University of CataloniaBarcelonaSpain
  3. 3.Institute of Composite and Biomedical MaterialsNational Research Council of ItalyNaplesItaly
  4. 4.School of EngineeringUniversity of GlasgowGlasgowScotland, UK

Personalised recommendations