European Spine Journal

, Volume 20, Issue 2, pp 289–296 | Cite as

Biomechanical evaluation of posterior lumbar dynamic stabilization: an in vitro comparison between Universal Clamp and Wallis systems

  • Brice Ilharreborde
  • Miranda N. Shaw
  • Lawrence J. Berglund
  • Kristin D. Zhao
  • Ralph E. Gay
  • Kai-Nan An
Original Article


Treatment of chronic low back pain due to degenerative lumbar spine conditions often involves fusion of the symptomatic level. A known risk of this procedure is accelerated adjacent level degeneration. Motion preservation devices have been designed to provide stabilization to the symptomatic motion segment while preserving some physiologic motion. The aim of this study was to compare the changes in relative range of motion caused as a result of application of two non-fusion, dynamic stabilization devices: the Universal Clamp (UC) and the Wallis device. Nine fresh, frozen human lumbar spines (L1–Sacrum) were tested in flexion–extension, lateral bending, and axial rotation with a custom spine simulator. Specimens were tested in four conditions: (1) intact, (2) the Universal Clamp implanted at L3–4 (UC), (3) the UC with a transverse rod added (UCTR), and (4) the Wallis device implanted at L3–4. Total range of motion at 7.5 N-m was determined for each device and compared to intact condition. The UC device (with or without a transverse rod) restricted motion in all planes more than the Wallis. The greatest restriction was observed in flexion. The neutral position of the L3–4 motion segment shifted toward extension with the UC and UCTR. Motion at the adjacent levels remained similar to that observed in the intact spine for all three constructs. These results suggest that the UC device may be an appropriate dynamic stabilization device for degenerative lumbar disorders.


Posterior dynamic stabilization Universal Clamp Wallis Biomechanics Range of motion 


  1. 1.
    Throckmorton TW, Hilibrand AS, Mencio GA, Hodge A, Spengler DM (2003) The impact of adjacent level disc degeneration on health status outcomes following lumbar fusion. Spine 28:2546–2550PubMedCrossRefGoogle Scholar
  2. 2.
    Dubois B, de Germay B, Schaerer NS, Fennema P (1999) Dynamic neutralization: a new concept for restabilization of the spine. In: Szpalski M, Gunzburg R, Pope MH (eds) Lumbar segmental instability. Lippincott/Williams & Wilkins, Philadelphia, pp 233–240Google Scholar
  3. 3.
    Korovessis P, Papazisis Z, Koureas G, Lambiris E (2004) Rigid, semirigid versus dynamic instrumentation for degenerative lumbar spinal stenosis: a correlative radiological and clinical analysis of short-term results. Spine 29:735–742PubMedCrossRefGoogle Scholar
  4. 4.
    Senegas J, Vital JM, Pointillart V, Mangione P (2007) Long-term actuarial survivorship analysis of an interspinous stabilization system. Eur Spine J 16:1279–1287PubMedCrossRefGoogle Scholar
  5. 5.
    Shim CS, Park SW, Lee SH, Lim TJ, Chun K, Kim DH (2008) Biomechanical evaluation of an interspinous stabilizing device, locker. Spine 33:E820–E827PubMedCrossRefGoogle Scholar
  6. 6.
    von Strempel A (2008) Cosmic: dynamic stabilization of the degenerated lumbar spine. In: Yue JJ et al (eds) Motion preservation surgery of the spine: advanced techniques and controversies. Elsevier, Philadelphia, pp 490–499Google Scholar
  7. 7.
    Wilke HJ, Drumm J, Haussler K, Mack C, Steudel WI, Kettler A (2008) Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J 17:1049–1056PubMedCrossRefGoogle Scholar
  8. 8.
    Senegas J, Vital JM, Pointillart V, Mangione P (2009) Clinical evaluation of a lumbar interspinous dynamic stabilization device (the wallis system) with a 13-year mean follow-up. Neurosurg Rev 32:335–341 discussion 341–342PubMedCrossRefGoogle Scholar
  9. 9.
    Gazzeri R, Faiola A, Galarza M, Tamorri M (2009) Universal clamp system in thoracolumbar spinal fixation: technical note. Acta Neurochir (Wien) 151:1673–1680CrossRefGoogle Scholar
  10. 10.
    Hongo M, Ilharreborde B, Gay RE, Zhao C, Zhao KD, Berglund LJ, Zobitz M, An KN (2009) Biomechanical evaluation of a new fixation device for the thoracic spine. Eur Spine J 18:1213–1219PubMedCrossRefGoogle Scholar
  11. 11.
    Mazda K, Ilharreborde B, Even J, Lefevre Y, Fitoussi F, Pennecot GF (2009) Efficacy and safety of posteromedial translation for correction of thoracic curves in adolescent idiopathic scoliosis using a new connection to the spine: the universal clamp. Eur Spine J 18:158–169PubMedCrossRefGoogle Scholar
  12. 12.
    Hongo M, Gay RE, Zhao KD, Ilharreborde B, Huddleston PM, Berglund LJ, An KN, Zhao C (2009) Junction kinematics between proximal mobile and distal fused lumbar segments: biomechanical analysis of pedicle and hook constructs. Spine J 9:846–853PubMedCrossRefGoogle Scholar
  13. 13.
    Senegas J (2002) Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments: the Wallis system. Eur Spine J 11(Suppl 2):S164–S169PubMedGoogle Scholar
  14. 14.
    Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154PubMedCrossRefGoogle Scholar
  15. 15.
    Booth KC, Bridwell KH, Eisenberg BA, Baldus CR, Lenke LG (1999) Minimum 5-year results of degenerative spondylolisthesis treated with decompression and instrumented posterior fusion. Spine 24:1721–1727PubMedCrossRefGoogle Scholar
  16. 16.
    Kumar MN, Jacquot F, Hall H (2001) Long-term follow-up of functional outcomes and radiographic changes at adjacent levels following lumbar spine fusion for degenerative disc disease. Eur Spine J 10:309–313PubMedCrossRefGoogle Scholar
  17. 17.
    Umehara S, Zindrick MR, Patwardhan AG, Havey RM, Vrbos LA, Knight GW, Miyano S, Kirincic M, Kaneda K, Lorenz MA (2000) The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments. Spine 25:1617–1624PubMedCrossRefGoogle Scholar
  18. 18.
    Guigui P, Chopin D (1994) Assessment of the use of the graf ligamentoplasty in the surgical treatment of lumbar spinal stenosis. Apropos of a series of 26 patients. Rev Chir Orthop Reparatrice Appar Mot 80:681–688PubMedGoogle Scholar
  19. 19.
    Markwalder TM, Dubach R, Braun M (1995) Soft system stabilization of the lumbar spine as an alternative surgical modality to lumbar arthrodesis in the facet syndrome. Preliminary results. Acta Neurochir (Wien) 134:1–4CrossRefGoogle Scholar
  20. 20.
    Grevitt MP, Gardner AD, Spilsbury J, Shackleford IM, Baskerville R, Pursell LM, Hassaan A, Mulholland RC (1995) The graf stabilisation system: Early results in 50 patients. Eur Spine J 4:169–175 discussion 135PubMedCrossRefGoogle Scholar
  21. 21.
    Onda A, Otani K, Konno S, Kikuchi S (2006) Mid-term and long-term follow-up data after placement of the graf stabilization system for lumbar degenerative disorders. J Neurosurg Spine 5:26–32PubMedCrossRefGoogle Scholar
  22. 22.
    Niosi CA, Zhu QA, Wilson DC, Keynan O, Wilson DR, Oxland TR (2006) Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. Eur Spine J 15:913–922PubMedCrossRefGoogle Scholar
  23. 23.
    Grob D, Benini A, Junge A, Mannion AF (2005) Clinical experience with the dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine 30:324–331PubMedCrossRefGoogle Scholar
  24. 24.
    Lafage V, Gangnet N, Senegas J, Lavaste F, Skalli W (2007) New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis. Spine 32:1706–1713PubMedCrossRefGoogle Scholar
  25. 25.
    Schulte TL, Hurschler C, Haversath M, Liljenqvist U, Bullmann V, Filler TJ, Osada N, Fallenberg EM, Hackenberg L (2008) The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression. Eur Spine J 17:1057–1065PubMedCrossRefGoogle Scholar
  26. 26.
    Korovessis P, Repantis T, Zacharatos S, Zafiropoulos A (2009) Does wallis implant reduce adjacent segment degeneration above lumbosacral instrumented fusion? Eur Spine J 18:830–840PubMedCrossRefGoogle Scholar
  27. 27.
    Fujiwara A, Lim TH, An HS, Tanaka N, Jeon CH, Andersson GB, Haughton VM (2000) The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine 25:3036–3044PubMedCrossRefGoogle Scholar
  28. 28.
    Ilharreborde B, Even J, Lefevre Y, Fitoussi F, Presedo A, Souchet P, Pennecot GF, Mazda K (2008) How to determine the upper level of instrumentation in lenke types 1 and 2 adolescent idiopathic scoliosis: a prospective study of 132 patients. J Pediatr Orthop 28:733–739PubMedGoogle Scholar
  29. 29.
    Jouve JL, de Gauzy JS, Blondel B, Launay F, Accadbled F, Bollini G (2010) Use of the universal clamp for deformity correction and as an adjunct to fusion: preliminary results in scoliosis. J Child Orthop 4:73–80Google Scholar
  30. 30.
    Grobler LJ, Gaines RW, Kempff PG (1997) Comparing mersilene* tape and stainless steel wire as sublaminar spinal fixation in the chagma baboon (papio ursinus). Iowa Orthop J 17:20–31PubMedGoogle Scholar
  31. 31.
    Fujita M, Diab M, Xu Z, Puttlitz CM (2006) A biomechanical analysis of sublaminar and subtransverse process fixation using metal wires and polyethylene cables. Spine 31:2202–2208PubMedCrossRefGoogle Scholar
  32. 32.
    Gaines RW Jr, Abernathie DL (1986) Mersilene tapes as a substitute for wire in segmental spinal instrumentation for children. Spine 11:907–913PubMedCrossRefGoogle Scholar
  33. 33.
    O’Brien JP, Stephens MM, Prickett CF, Wilcox A, Evans JH (1986) Nylon sublaminar straps in segmental instrumentation for spinal disorders. Clin Orthop Relat Res Feb:168-71Google Scholar
  34. 34.
    Takahata M, Ito M, Abumi K, Kotani Y, Sudo H, Ohshima S, Minami A (2007) Comparison of novel ultra-high molecular weight polyethylene tape versus conventional metal wire for sublaminar segmental fixation in the treatment of adolescent idiopathic scoliosis. J Spinal Disord Tech 20:449–455PubMedCrossRefGoogle Scholar
  35. 35.
    Goel VK, Panjabi MM, Patwardhan AG, Dooris AP, Serhan H (2006) Test protocols for evaluation of spinal implants. J Bone Joint Surg Am 88(Suppl 2):103–109PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Brice Ilharreborde
    • 1
    • 2
  • Miranda N. Shaw
    • 1
  • Lawrence J. Berglund
    • 1
  • Kristin D. Zhao
    • 1
  • Ralph E. Gay
    • 1
    • 3
  • Kai-Nan An
    • 1
  1. 1.Biomechanics Laboratory, Division of Orthopedic Research, Mayo ClinicRochesterUSA
  2. 2.Department of Pediatric Orthopedic Surgery, Robert Debré HospitalParis 7 UniversityParisFrance
  3. 3.Department of Physical Medicine and Rehabilitation, Mayo ClinicRochesterUSA

Personalised recommendations