Advertisement

European Spine Journal

, Volume 21, Supplement 5, pp 618–629 | Cite as

Primary and coupled motions after cervical total disc replacement using a compressible six-degree-of-freedom prosthesis

  • A. G. PatwardhanEmail author
  • M. N. Tzermiadianos
  • P. P. Tsitsopoulos
  • L. I. Voronov
  • S. M. Renner
  • M. L. Reo
  • G. Carandang
  • K. Ritter-Lang
  • R. M. Havey
Original Article

Abstract

This study tested the hypotheses that (1) cervical total disc replacement with a compressible, six-degree-of-freedom prosthesis would allow restoration of physiologic range and quality of motion, and (2) the kinematic response would not be adversely affected by variability in prosthesis position in the sagittal plane. Twelve human cadaveric cervical spines were tested. Prostheses were implanted at C5–C6. Range of motion (ROM) was measured in flexion–extension, lateral bending, and axial rotation under ±1.5 Nm moments. Motion coupling between axial rotation and lateral bending was calculated. Stiffness in the high flexibility zone was evaluated in all three testing modes, while the center of rotation (COR) was calculated using digital video fluoroscopic images in flexion–extension. Implantation in the middle position increased ROM in flexion–extension from 13.5 ± 2.3 to 15.7 ± 3.0° (p < 0.05), decreased axial rotation from 9.9 ± 1.7 to 8.3 ± 1.6° (p < 0.05), and decreased lateral bending from 8.0 ± 2.1 to 4.5 ± 1.1° (p < 0.05). Coupled lateral bending decreased from 0.62 ± 0.16 to 0.39 ± 0.15° for each degree of axial rotation (p < 0.05). Flexion–extension stiffness of the reconstructed segment with the prosthesis in the middle position did not deviate significantly from intact controls, whereas the lateral bending and axial rotation stiffness values were significantly larger than intact. Implanting the prosthesis in the posterior position as compared to the middle position did not significantly affect the ROM, motion coupling, or stiffness of the reconstructed segment; however, the COR location better approximated intact controls with the prosthesis midline located within ±1 mm of the disc-space midline. Overall, the kinematic response after reconstruction with the compressible, six-degree-of-freedom prosthesis within ±1 mm of the disc-space midline approximated the intact response in flexion–extension. Clinical studies are needed to understand and interpret the effects of limited restoration of lateral bending and axial rotation motions and motion coupling on clinical outcome.

Keywords

Cervical spine Total disc replacement Biomechanics Motion coupling Center of rotation 

Notes

Acknowledgments

Institutional research support provided by the Department of Veterans Affairs, Washington, DC, and Spinal Kinetics Inc., Sunnyvale, CA.

Conflict of interest

None.

References

  1. 1.
    Baba H, Furusawa N, Imura S, Kawahara N, Tsuchiya H, Tomita K (1993) Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine 18:2167–2173PubMedCrossRefGoogle Scholar
  2. 2.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRefGoogle Scholar
  3. 3.
    Bogduk N, Mercer S (2000) Biomechanics of the cervical spine. I: Normal kinematics. Clin Biomech 15:633–648. doi: S0268-0033(00)00034-6[pii] CrossRefGoogle Scholar
  4. 4.
    Bryan VE Jr (2002) Cervical motion segment replacement. Eur Spine J 11(Suppl 2):S92–S97. doi: 10.1007/s00586-002-0437-3 PubMedGoogle Scholar
  5. 5.
    Buchowski JM, Riew KD (2008) Primary indications and disc space preparation for cervical disc arthroplasty. In: Yue JJ, Bertagnoli R, McAfee PC, An HS (eds) Motion preservation surgery of the spine. Saunders Elsevier, Philadelphia, pp 185–192CrossRefGoogle Scholar
  6. 6.
    Chang UK, Kim DH, Lee MC, Willenberg R, Kim SH, Lim J (2007) Range of motion change after cervical arthroplasty with ProDisc-C and prestige artificial discs compared with anterior cervical discectomy and fusion. J Neurosurg Spine 7:40–46. doi: 10.3171/SPI-07/07/040 PubMedCrossRefGoogle Scholar
  7. 7.
    Cherry C (2002) Anterior cervical discectomy and fusion for cervical disc disease. AORN J 76:998–1004, 1007–1008, quiz 1009–1012Google Scholar
  8. 8.
    Delamarter RB, Pradhan BB (2008) ProDisc-C total cervical disc replacement. In: Yue JJ, Bertagnoli R, McAfee PC, An HS (eds) Motion preservation surgery of the spine. Saunders Elsevier, Philadelphia, pp 214–220CrossRefGoogle Scholar
  9. 9.
    DiAngelo DJ, Roberston JT, Metcalf NH, McVay BJ, Davis RC (2003) Biomechanical testing of an artificial cervical joint and an anterior cervical plate. J Spinal Disord Tech 16:314–323PubMedCrossRefGoogle Scholar
  10. 10.
    Dmitriev AE, Cunningham BW, Hu N, Sell G, Vigna F, McAfee PC (2005) Adjacent level intradiscal pressure and segmental kinematics following a cervical total disc arthroplasty: an in vitro human cadaveric model. Spine 30:1165–1172. doi: 00007632-200505150-00011[pii] PubMedCrossRefGoogle Scholar
  11. 11.
    Dooris AP, Goel VK, Grosland NM, Gilbertson LG, Wilder DG (2001) Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine 26:E122–E129PubMedCrossRefGoogle Scholar
  12. 12.
    Duggal N, Pickett GE, Mitsis DK, Keller JL (2004) Early clinical and biomechanical results following cervical arthroplasty. Neurosurg Focus 17:E9. doi: 170309[pii] PubMedCrossRefGoogle Scholar
  13. 13.
    Ferrario VF, Sforza C, Serrao G, Grassi G, Mossi E (2002) Active range of motion of the head and cervical spine: a three-dimensional investigation in healthy young adults. J Orthop Res 20:122–129. doi: 10.1016/S0736-0266(01)00079-1 PubMedCrossRefGoogle Scholar
  14. 14.
    Finn MA, Brodke DS, Daubs M, Patel A, Bachus KN (2009) Local and global subaxial cervical spine biomechanics after single-level fusion or cervical arthroplasty. Eur Spine J 18:1520–1527. doi: 10.1007/s00586-009-1085-7 PubMedCrossRefGoogle Scholar
  15. 15.
    Fuller DA, Kirkpatrick JS, Emery SE, Wilber RG, Davy DT (1998) A kinematic study of the cervical spine before and after segmental arthrodesis. Spine 23:1649–1656PubMedCrossRefGoogle Scholar
  16. 16.
    Goel VK, Clark CR, McGowan D, Goyal S (1984) An in vitro study of the kinematics of the normal, injured and stabilized cervical spine. J Biomech 17:363–376. doi: 0021-9290(84)90030-7[pii] PubMedCrossRefGoogle Scholar
  17. 17.
    Goel VK, Panjabi MM, Patwardhan AG, Dooris AP, Serhan H (2006) Test protocols for evaluation of spinal implants. J Bone Joint Surg Am 88(Suppl 2):103–109. doi: 88/1suppl2/103[pii].10.2106/JBJS.E.01363 PubMedCrossRefGoogle Scholar
  18. 18.
    Goffin J, Geusens E, Vantomme N, Quintens E, Waerzeggers Y, Depreitere B, Van Calenbergh F, van Loon J (2004) Long-term follow-up after interbody fusion of the cervical spine. J Spinal Disord Tech 17:79–85PubMedCrossRefGoogle Scholar
  19. 19.
    Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman HH (1999) Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am 81:519–528PubMedGoogle Scholar
  20. 20.
    Hipp JA, Wharton ND (2008) Quantitative motion analysis (QMA) of motion-preserving and fusion technologies for the spine. In: Yue JJ, Bertagnoli R, McAfee PC, An HS (eds) Motion preservation surgery of the spine. Saunders Elsevier, Philadeplhia, pp 85–96CrossRefGoogle Scholar
  21. 21.
    Holmes A, Wang C, Han ZH, Dang GT (1994) The range and nature of flexion-extension motion in the cervical spine. Spine 19:2505–2510PubMedCrossRefGoogle Scholar
  22. 22.
    Ishihara H, Kanamori M, Kawaguchi Y, Nakamura H, Kimura T (2004) Adjacent segment disease after anterior cervical interbody fusion. Spine J 4:624–628. doi: S1529-9430(04)00229-3[pii].10.1016/j.spinee.2004.04.011 PubMedCrossRefGoogle Scholar
  23. 23.
    Ishii T, Mukai Y, Hosono N, Sakaura H, Fujii R, Nakajima Y, Tamura S, Iwasaki M, Yoshikawa H, Sugamoto K (2006) Kinematics of the cervical spine in lateral bending: in vivo three-dimensional analysis. Spine 31:155–160PubMedCrossRefGoogle Scholar
  24. 24.
    Jaramillo-de la Torre JJ, Grauer JN, Yue JJ (2008) Update on cervical disc arthroplasty: where are we and where are we going? Curr Rev Musculoskelet Med 1:124–130. doi: 10.1007/s12178-008-9019-2 PubMedCrossRefGoogle Scholar
  25. 25.
    Kotani Y, Cunningham BW, Abumi K, Dmitriev AE, Ito M, Hu N, Shikinami Y, McAfee PC, Minami A (2005) Multidirectional flexibility analysis of cervical artificial disc reconstruction: in vitro human cadaveric spine model. J Neurosurg Spine 2:188–194. doi: 10.3171/spi.2005.2.2.0188 PubMedCrossRefGoogle Scholar
  26. 26.
    Le H, Thongtrangan I, Kim DH (2004) Historical review of cervical arthroplasty. Neurosurg Focus 17:E1. doi: 170301[pii] PubMedCrossRefGoogle Scholar
  27. 27.
    Lee M, Dumonski M, Phillips FM, Voronov LI, Renner SM, Carandang G, Havey RM, Patwardhan AG (2010) Disc replacement adjacent to cervical fusion: a biomechanical comparison of hybrid construct vs. two-level fusion. Spine (in press)Google Scholar
  28. 28.
    Martin S, Ghanayem A, Tzermiadianos M, Voronov LI, Havey RM, Renner SM, Carandang G, Abjornson C, Patwadhan AG (2010) Kinematics of cervical total disc replacement adjacent to a two-level, straight vs. lordotic fusion. Spine (in press)Google Scholar
  29. 29.
    McAfee PC (2008) Porous coated motion (PCM) cervical arthroplasty. In: Yue JJ, Bertagnoli R, McAfee PC, An HS (eds) Motion preservation surgery of the spine. Saunders Elsevier, Philadelphia, pp 202–213CrossRefGoogle Scholar
  30. 30.
    McAfee PC, Cunningham B, Dmitriev A, Hu N, WooKim S, Cappuccino A, Pimenta L (2003) Cervical disc replacement-porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament. Spine 28:S176–S185. doi: 10.1097/01.BRS.0000092219.28382.0C PubMedCrossRefGoogle Scholar
  31. 31.
    McAfee PC, Cunningham BW, Hayes V, Sidiqi F, Dabbah M, Sefter JC, Hu N, Beatson H (2006) Biomechanical analysis of rotational motions after disc arthroplasty: implications for patients with adult deformities. Spine 31:S152–S160. doi: 10.1097/01.brs.0000234782.89031.03.00007632-200609011-00008[pii] PubMedCrossRefGoogle Scholar
  32. 32.
    Mehren C, Suchomel P, Grochulla F, Barsa P, Sourkova P, Hradil J, Korge A, Mayer HM (2006) Heterotopic ossification in total cervical artificial disc replacement. Spine 31:2802–2806. doi: 10.1097/01.brs.0000245852.70594.d5.00007632-200611150-00010[pii] PubMedCrossRefGoogle Scholar
  33. 33.
    Mimura M, Moriya H, Watanabe T, Takahashi K, Yamagata M, Tamaki T (1989) Three-dimensional motion analysis of the cervical spine with special reference to the axial rotation. Spine 14:1135–1139PubMedCrossRefGoogle Scholar
  34. 34.
    Moroney SP, Schultz AB, Miller JA (1988) Analysis and measurement of neck loads. J Orthop Res 6:713–720. doi: 10.1002/jor.1100060514 PubMedCrossRefGoogle Scholar
  35. 35.
    Moroney SP, Schultz AB, Miller JA, Andersson GB (1988) Load-displacement properties of lower cervical spine motion segments. J Biomech 21:769–779PubMedCrossRefGoogle Scholar
  36. 36.
    Panjabi MM (1992) The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord 5:390–396 discussion 397PubMedCrossRefGoogle Scholar
  37. 37.
    Panjabi MM, Crisco JJ, Vasavada A, Oda T, Cholewicki J, Nibu K, Shin E (2001) Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine 26:2692–2700PubMedCrossRefGoogle Scholar
  38. 38.
    Panjabi MM, Miura T, Cripton PA, Wang JL, Nain AS, DuBois C (2001) Development of a system for in vitro neck muscle force replication in whole cervical spine experiments. Spine 26:2214–2219PubMedCrossRefGoogle Scholar
  39. 39.
    Panjabi MM, Summers DJ, Pelker RR, Videman T, Friedlaender GE, Southwick WO (1986) Three-dimensional load-displacement curves due to forces on the cervical spine. J Orthop Res 4:152–161. doi: 10.1002/jor.1100040203 PubMedCrossRefGoogle Scholar
  40. 40.
    Patwardhan AG, Havey RM, Carandang G, Simonds J, Voronov LI, Ghanayem AJ, Meade KP, Gavin TM, Paxinos O (2003) Effect of compressive follower preload on the flexion-extension response of the human lumbar spine. J Orthop Res 21:540–546. doi: S0736026602002024[pii].10.1016/S0736-0266(02)00202-4 PubMedCrossRefGoogle Scholar
  41. 41.
    Patwardhan AG, Havey RM, Ghanayem AJ, Diener H, Meade KP, Dunlap B, Hodges SD (2000) Load-carrying capacity of the human cervical spine in compression is increased under a follower load. Spine 25:1548–1554PubMedCrossRefGoogle Scholar
  42. 42.
    Phillips FM, Tzermiadianos MN, Voronov LI, Havey RM, Carandang G, Dooris A, Patwardhan AG (2009) Effect of two-level total disc replacement on cervical spine kinematics. Spine 34:E794–E799. doi: 10.1097/BRS.0b013e3181afe4bb.00007632-200910150-00029[pii] PubMedCrossRefGoogle Scholar
  43. 43.
    Pimenta L, McAfee PC, Cappuccino A, Bellera FP, Link HD (2004) Clinical experience with the new artificial cervical PCM (Cervitech) disc. Spine J 4:315S–321S. doi: S1529-9430(04)00591-1[pii].10.1016/j.spinee.2004.07.024 PubMedCrossRefGoogle Scholar
  44. 44.
    Puttlitz CM, DiAngelo DJ (2005) Cervical spine arthroplasty biomechanics. Neurosurg Clin N Am 16:589–594. doi: v.S1042-3680(05)00052-5[pii].10.1016/j.nec.2005.07.002 PubMedCrossRefGoogle Scholar
  45. 45.
    Puttlitz CM, Rousseau MA, Xu Z, Hu S, Tay BK, Lotz JC (2004) Intervertebral disc replacement maintains cervical spine kinetics. Spine 29:2809–2814. doi: 00007632-200412150-00005[pii] PubMedCrossRefGoogle Scholar
  46. 46.
    Reyes-Sánchez A, Patwardhan AG, Block JE (2008) The M6 artificial cervical disc. In: Yue JJ, Bertagnoli R, McAfee PC, An HS (eds) Motion preservation surgery of the spine. Saunders Elsevier, PhiladelphiaGoogle Scholar
  47. 47.
    Richter M, Wilke HJ, Kluger P, Claes L, Puhl W (2000) Load-displacement properties of the normal and injured lower cervical spine in vitro. Eur Spine J 9:104–108PubMedCrossRefGoogle Scholar
  48. 48.
    Rousseau MA, Bonnet X, Skalli W (2008) Influence of the geometry of a ball-and-socket intervertebral prosthesis at the cervical spine: a finite element study. Spine 33:E10–E14. doi: 10.1097/BRS.0b013e31815e62ea.00007632-200801010-00024[pii] PubMedCrossRefGoogle Scholar
  49. 49.
    Sears W, McCombe P, Sasso R (2006) Kinematics of cervical and lumbar total disc replacement. Semin Spine Surg 18:117–129CrossRefGoogle Scholar
  50. 50.
    Sekhon LH, Duggal N, Lynch JJ, Haid RW, Heller JG, Riew KD, Seex K, Anderson PA (2007) Magnetic resonance imaging clarity of the Bryan, Prodisc-C, Prestige LP, and PCM cervical arthroplasty devices. Spine 32:673–680. doi: 10.1097/01.brs.0000257547.17822.14.00007632-200703150-00012[pii] PubMedCrossRefGoogle Scholar
  51. 51.
    Senouci M, FitzPatrick D, Quinlan JF, Mullett H, Coffey L, McCormack D (2007) Quantification of the coupled motion that occurs with axial rotation and lateral bending of the head-neck complex: an experimental examination. Proc Inst Mech Eng H 221:913–919PubMedCrossRefGoogle Scholar
  52. 52.
    Snyder JT, Tzermiadianos MN, Ghanayem AJ, Voronov LI, Rinella A, Dooris A, Carandang G, Renner SM, Havey RM, Patwardhan AG (2007) Effect of uncovertebral joint excision on the motion response of the cervical spine after total disc replacement. Spine 32:2965–2969. doi: 10.1097/BRS.0b013e31815cd482.00007632-200712150-00007[pii] PubMedCrossRefGoogle Scholar
  53. 53.
    Traynelis VC (2006) Cervical arthroplasty. Clin Neurosurg 53:203–207PubMedGoogle Scholar
  54. 54.
    Tzermiadianos M, Voronov LI, Renner SM, Havey RM, Carandang G, Zindrick MR, Hadjipavlou A, Patwadhan A (2007) Effects of retained annular fibers on the kinematics of cervical disc arthroplasty. In: Cervical Spine Research Society annual meeting. San Francisco, CAGoogle Scholar
  55. 55.
    Wigfield C, Gill S, Nelson R, Langdon I, Metcalf N, Robertson J (2002) Influence of an artificial cervical joint compared with fusion on adjacent-level motion in the treatment of degenerative cervical disc disease. J Neurosurg 96:17–21PubMedGoogle Scholar
  56. 56.
    Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154PubMedCrossRefGoogle Scholar
  57. 57.
    Wilke HJ, Wolf S, Claes LE, Arand M, Wiesend A (1995) Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study. Spine 20:192–198PubMedCrossRefGoogle Scholar
  58. 58.
    Yoganandan N, Pintar FA, Stemper BD, Wolfla CE, Shender BS, Paskoff G (2007) Level-dependent coronal and axial moment-rotation corridors of degeneration-free cervical spines in lateral flexion. J Bone Joint Surg Am 89:1066–1074. doi: 89/5/1066[pii].10.2106/JBJS.F.00200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • A. G. Patwardhan
    • 1
    • 2
    Email author
  • M. N. Tzermiadianos
    • 1
    • 2
  • P. P. Tsitsopoulos
    • 1
    • 2
  • L. I. Voronov
    • 1
    • 2
  • S. M. Renner
    • 2
  • M. L. Reo
    • 3
  • G. Carandang
    • 2
  • K. Ritter-Lang
    • 4
  • R. M. Havey
    • 1
    • 2
  1. 1.Department of Orthopaedic Surgery and RehabilitationLoyola University Medical CenterMaywoodUSA
  2. 2.Musculoskeletal Biomechanics Laboratory, Department of Veterans AffairsEdward Hines Jr. VA HospitalHinesUSA
  3. 3.Spinal Kinetics Inc.SunnyvaleUSA
  4. 4.Department of Orthopaedic Surgery, Special Clinic for OrthopaedicsStenum HospitalGanderkeseeGermany

Personalised recommendations