Advertisement

European Spine Journal

, Volume 19, Issue 12, pp 2171–2180 | Cite as

Dynamic stabilization adjacent to single-level fusion: Part I. Biomechanical effects on lumbar spinal motion

  • Patrick Strube
  • Stephan Tohtz
  • Eike Hoff
  • Christian Gross
  • Carsten Perka
  • Michael Putzier
Original Article

Abstract

Progression of superior adjacent segment degeneration (PASD) could possibly be avoided by dynamic stabilization of an initially degenerated adjacent segment (AS). The current study evaluates ex vivo the biomechanics of a circumferential fixation connected to posterior dynamic stabilization at the AS. 6 human cadaver spines (L2–S1) were stabilized stepwise through the following conditions for comparison: intact spine (ISP), single-level fixation L5–S1 (SLF), SLF + dynamic AS fixation L4–L5 (DFT), and two-level fixation L4–S1 (TLF). For each condition, the moments required to reach the range of motion (ROM) of the intact whole spine segment under ±10 Nm (WSP10) were compared for all major planes of motion within L2–S1. The ROM at segments L2/3, L3/4, and L4/5 when WSP10 was applied were also compared for each condition. The moments needed to maintain WSP10 increased with each stage of stabilization, from ISP to SLF to DFT to TLF (p < 0.001), in all planes of motion within L2–S1. The ROM increased in the same order at L3/4 (extension, flexion, and lateral bending) and L2/3 (all except right axial rotation, left lateral bending) during WSP10 application with 300 N axial preload (p < 0.005 in ANOVA). At L4/5, while applying WSP10, all planes of motion were affected by stepwise stabilization (p < 0.001): ROM increased from ISP to SLF and decreased from SLF to DFT to TLF (partially p < 0.05). The moments required to reach WSP10 increase dependent on the number of fixated levels and the fixation stiffness of the implants used. Additional fixation shifts motion to the superior segment, according to fixation stiffness. Therefore, dynamic instrumentation cannot be recommended if prevention of hyper-mobility in the adjacent levels is the main target.

Keywords

Biomechanical evaluation Dynamic stabilization Adjacent segment degeneration Lumbar circumferential fusion Segment instability Low back pain 

Notes

Conflict of interest

None.

References

  1. 1.
    Bastian L, Lange U, Knop C, Tusch G, Blauth M (2001) Evaluation of the mobility of adjacent segments after posterior thoracolumbar fixation: a biomechanical study. Eur Spine J 10:295–300CrossRefPubMedGoogle Scholar
  2. 2.
    Beastall J, Karadimas E, Siddiqui M, Nicol M, Hughes J, Smith F, Wardlaw D (2007) The Dynesys lumbar spinal stabilization system: a preliminary report on positional magnetic resonance imaging findings. Spine (Phila Pa 1976) 32:685–690Google Scholar
  3. 3.
    Cheng BC, Gordon J, Cheng J, Welch WC (2007) Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion. Spine (Phila Pa 1976) 32:2551–2557Google Scholar
  4. 4.
    Chou WY, Hsu CJ, Chang WN, Wong CY (2002) Adjacent segment degeneration after lumbar spinal posterolateral fusion with instrumentation in elderly patients. Arch Orthop Trauma Surg 122:39–43PubMedGoogle Scholar
  5. 5.
    Chow DH, Luk KD, Evans JH, Leong JC (1996) Effects of short anterior lumbar interbody fusion on biomechanics of neighboring unfused segments. Spine (Phila Pa 1976) 21:549–555Google Scholar
  6. 6.
    Cunningham BW, Kotani Y, McNulty PS, Cappuccino A, McAfee PC (1997) The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure: an in vitro biomechanical analysis. Spine (Phila Pa 1976) 22:2655–2663Google Scholar
  7. 7.
    Dekutoski MB, Schendel MJ, Ogilvie JW, Olsewski JM, Wallace LJ, Lewis JL (1994) Comparison of in vivo and in vitro adjacent segment motion after lumbar fusion. Spine (Phila Pa 1976) 19:1745–1751Google Scholar
  8. 8.
    Eck JC, Humphreys SC, Hodges SD (1999) Adjacent-segment degeneration after lumbar fusion: a review of clinical, biomechanical, and radiologic studies. Am J Orthop 28:336–340PubMedGoogle Scholar
  9. 9.
    Etebar S, Cahill DW (1999) Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability. J Neurosurg 90:163–169PubMedGoogle Scholar
  10. 10.
    Gardner A, Pande KC (2002) Graf ligamentoplasty: a 7-year follow-up. Eur Spine J 11(Suppl 2):S157–S163PubMedGoogle Scholar
  11. 11.
    Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG (2004) Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am 86-A:1497–1503PubMedGoogle Scholar
  12. 12.
    Goto K, Tajima N, Chosa E, Totoribe K, Kubo S, Kuroki H, Arai T (2003) Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis). J Orthop Sci 8:577–584CrossRefPubMedGoogle Scholar
  13. 13.
    Hambly MF, Wiltse LL, Raghavan N, Schneiderman G, Koenig C (1998) The transition zone above a lumbosacral fusion. Spine (Phila Pa 1976) 23:1785–1792Google Scholar
  14. 14.
    Kanayama M, Hashimoto T, Shigenobu K, Togawa D, Oha F (2007) A minimum 10-year follow-up of posterior dynamic stabilization using Graf artificial ligament. Spine (Phila Pa 1976) 32:1992–1996 (discussion 1997)Google Scholar
  15. 15.
    Kim YS, Zhang HY, Moon BJ, Park KW, Ji KY, Lee WC, Oh KS, Ryu GU, Kim DH (2007) Nitinol spring rod dynamic stabilization system and Nitinol memory loops in surgical treatment for lumbar disc disorders: short-term follow up. Neurosurg Focus 22:E10Google Scholar
  16. 16.
    Kumar MN, Baklanov A, Chopin D (2001) Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J 10:314–319CrossRefPubMedGoogle Scholar
  17. 17.
    Kumar MN, Jacquot F, Hall H (2001) Long-term follow-up of functional outcomes and radiographic changes at adjacent levels following lumbar spine fusion for degenerative disc disease. Eur Spine J 10:309–313CrossRefPubMedGoogle Scholar
  18. 18.
    Mochida J, Toh E, Suzuki K, Chiba M, Arima T (1997) An innovative method using the Leeds-Keio artificial ligament in the unstable spine. Orthopedics 20:17–23PubMedGoogle Scholar
  19. 19.
    Niosi CA, Wilson DC, Zhu Q, Keynan O, Wilson DR, Oxland TR (2008) The effect of dynamic posterior stabilization on facet joint contact forces: an in vitro investigation. Spine (Phila Pa 1976) 33:19–26Google Scholar
  20. 20.
    Niosi CA, Zhu QA, Wilson DC, Keynan O, Wilson DR, Oxland TR (2006) Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. Eur Spine J 15:913–922CrossRefPubMedGoogle Scholar
  21. 21.
    Panjabi MM (2007) Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech (Bristol, Avon) 22:257–265CrossRefGoogle Scholar
  22. 22.
    Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976) 29:1938–1944Google Scholar
  23. 23.
    Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine (Phila Pa 1976) 24:1003–1009Google Scholar
  24. 24.
    Penta M, Sandhu A, Fraser RD (1995) Magnetic resonance imaging assessment of disc degeneration 10 years after anterior lumbar interbody fusion. Spine (Phila Pa 1976) 20:743–747Google Scholar
  25. 25.
    Pihlajamaki H, Bostman O, Ruuskanen M, Myllynen P, Kinnunen J, Karaharju E (1996) Posterolateral lumbosacral fusion with transpedicular fixation: 63 consecutive cases followed for 4 (2–6) years. Acta Orthop Scand 67:63–68CrossRefPubMedGoogle Scholar
  26. 26.
    Putzier M, Schneider SV, Funk JF, Tohtz SW, Perka C (2005) The surgical treatment of the lumbar disc prolapse: nucleotomy with additional transpedicular dynamic stabilization versus nucleotomy alone. Spine (Phila Pa 1976) 30:E109–E114Google Scholar
  27. 27.
    Rahm MD, Hall BB (1996) Adjacent-segment degeneration after lumbar fusion with instrumentation: a retrospective study. J Spinal Disord 9:392–400CrossRefPubMedGoogle Scholar
  28. 28.
    Rohlmann A, Burra NK, Zander T, Bergmann G (2007) Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. Eur Spine J 16:1223–1231CrossRefPubMedGoogle Scholar
  29. 29.
    Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ (2001) Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine (Phila Pa 1976) 26:E557–E561Google Scholar
  30. 30.
    Schmoelz W, Huber JF, Nydegger T, Claes L, Wilke HJ (2006) Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure. Eur Spine J 15:1276–1285CrossRefPubMedGoogle Scholar
  31. 31.
    Schmoelz W, Huber JF, Nydegger T, Dipl I, Claes L, Wilke HJ (2003) Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 16:418–423PubMedGoogle Scholar
  32. 32.
    Sengupta DK (2004) Dynamic stabilization devices in the treatment of low back pain. Orthop Clin North Am 35:43–56CrossRefPubMedGoogle Scholar
  33. 33.
    Stoll TM, Dubois G, Schwarzenbach O (2002) The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J 11(Suppl 2):S170–S178PubMedGoogle Scholar
  34. 34.
    Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3:91–97CrossRefPubMedGoogle Scholar
  35. 35.
    Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251:15–19CrossRefPubMedGoogle Scholar
  36. 36.
    Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154CrossRefPubMedGoogle Scholar
  37. 37.
    Yue JJ, Timm JP, Panjabi MM, Jaramillo-de la Torre J (2007) Clinical application of the Panjabi neutral zone hypothesis: the Stabilimax NZ posterior lumbar dynamic stabilization system. Neurosurg Focus 22:E12CrossRefPubMedGoogle Scholar
  38. 38.
    Zander T, Rohlmann A, Burra NK, Bergmann G (2006) Effect of a posterior dynamic implant adjacent to a rigid spinal fixator. Clin Biomech (Bristol, Avon) 21:767–774CrossRefGoogle Scholar
  39. 39.
    Zhu Q, Larson CR, Sjovold SG, Rosler DM, Keynan O, Wilson DR, Cripton PA, Oxland TR (2007) Biomechanical evaluation of the Total Facet Arthroplasty System: 3-dimensional kinematics. Spine (Phila Pa 1976) 32:55–62Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Patrick Strube
    • 1
  • Stephan Tohtz
    • 1
  • Eike Hoff
    • 1
  • Christian Gross
    • 1
  • Carsten Perka
    • 1
  • Michael Putzier
    • 1
  1. 1.Clinic for Orthopaedics, Center for Musculoskeletal SurgeryCharité-Universitätsmedizin BerlinBerlinGermany

Personalised recommendations