Advertisement

European Spine Journal

, Volume 19, Issue 12, pp 2137–2148 | Cite as

The stabilizing potential of anterior, posterior and combined techniques for the reconstruction of a 2-level cervical corpectomy model: biomechanical study and first results of ATPS prototyping

  • Heiko Koller
  • Rene Schmidt
  • Michael Mayer
  • Wolfgang Hitzl
  • Juliane Zenner
  • Stefan Middendorf
  • Nicolaus Gräf
  • H. Resch
  • Hans-Joachim Willke
Original Article

Abstract

Clinical studies reported frequent failure with anterior instrumented multilevel cervical corpectomies. Hence, posterior augmentation was recommended but necessitates a second approach. Thus, an author group evaluated the feasibility, pull-out characteristics, and accuracy of anterior transpedicular screw (ATPS) fixation. Although first success with clinical application of ATPS has already been reported, no data exist on biomechanical characteristics of an ATPS-plate system enabling transpedicular end-level fixation in advanced instabilities. Therefore, we evaluated biomechanical qualities of an ATPS prototype C4–C7 for reduction of range of motion (ROM) and primary stability in a non-destructive setup among five constructs: anterior plate, posterior all-lateral mass screw construct, posterior construct with lateral mass screws C5 + C6 and end-level fixation using pedicle screws unilaterally or bilaterally, and a 360° construct. 12 human spines C3–T1 were divided into two groups. Four constructs were tested in group 1 and three in group 2; the ATPS prototypes were tested in both groups. Specimens were subjected to flexibility test in a spine motion tester at intact state and after 2-level corpectomy C5–C6 with subsequent reconstruction using a distractable cage and one of the osteosynthesis mentioned above. ROM in flexion–extension, axial rotation, and lateral bending was reported as normalized values. All instrumentations but the anterior plate showed significant reduction of ROM for all directions compared to the intact state. The 360° construct outperformed all others in terms of reducing ROM. While there were no significant differences between the 360° and posterior constructs in flexion–extension and lateral bending, the 360° constructs were significantly more stable in axial rotation. Concerning primary stability of ATPS prototypes, there were no significant differences compared to posterior-only constructs in flexion–extension and axial rotation. The 360° construct showed significant differences to the ATPS prototypes in flexion–extension, while no significant differences existed in axial rotation. But in lateral bending, the ATPS prototype and the anterior plate performed significantly worse than the posterior constructs. ATPS was shown to confer increased primary stability compared to the anterior plate in flexion–extension and axial rotation with the latter yielding significance. We showed that primary stability after 2-level corpectomy reconstruction using ATPS prototypes compared favorably to posterior systems and superior to anterior plates. From the biomechanical point, the 360° instrumentation was shown the most efficient for reconstruction of 2-level corpectomies. Further studies will elucidate whether fatigue testing will enhance the benefit of transpedicular anchorage with posterior constructs and ATPS.

Keywords

Cervical spine Biomechanical study Corpectomy Pedicle screw Reconstruction 

Notes

Acknowledgments

The authors thank Synthes for financial support to perform the biomechanical study and for implants provided. With the ATPS concept, there is no patent closed or pending that might hinder further engineering on the issue.

References

  1. 1.
    Abddullah KG, Steinmetz MP, Mroz TE (2009) Morphometric and volumetric analysis of the lateral masses of the lower cervical spine. Spine 34:1476–1479CrossRefGoogle Scholar
  2. 2.
    Abumi K, Shono Y, Taneichi H, Itoh M, Kaneda K (1999) Correction of cervical kyphosis using pedicle screw fixation systems. Spine 24:2456–2462CrossRefGoogle Scholar
  3. 3.
    Acosta LF, Aryan HE, Chou D, Ames CP (2008) Long-term biomechanical stability and clinical improvement after extended multilevel corpectomy and circumferential reconstruction of the cervical spine using titanium mesh cages. J Spinal Disord Tech 21:165–174PubMedCrossRefGoogle Scholar
  4. 4.
    Ames PC, Bozkus MH, Chamberlain RH, Acosta FL, Papadopoulos SM, Sonntag VKH, Crawford NR (2005) Biomechanics of stabilization after cervicothoracic compression-flexion injury. Spine 30:1505–1512PubMedCrossRefGoogle Scholar
  5. 5.
    Aramomi M, Masaki Y, Koshizuka, Kadota R, Okawa A, Koda M, Yamazaki M (2008) Anterior pedicle screw fixation for multilevel cervical corpectomy and spinal fusion. Acta Neurochir 150:575–582CrossRefGoogle Scholar
  6. 6.
    Aryan HE, Sanchez-Mejia RO, Ben-Haim S, Ames CP (2007) Successful treatment of cervical myelopathy with minimal morbidity by circumferential decompression and fusion. Eur Spine J 16:1401–1409PubMedCrossRefGoogle Scholar
  7. 7.
    Bogduk N, Mercer S (2000) Biomechanics of the cervical spine. I: Normal kinematics. Clin Biomech 15:633–648CrossRefGoogle Scholar
  8. 8.
    Bozkus H, Ames CP, Chamberlain RH, Nottmeier EW, Sonntag VKH, Papadopoulos SM, Crawford NR (2005) Biomechanical analysis of rigid stabilization techniques for three-column injury in the lower cervical spine. Spine 30:915–922PubMedCrossRefGoogle Scholar
  9. 9.
    Bransford RJ, Russo A, Freeborn M, Nuyen Q, Lee MJ, Chapman J, Bellabarba C (2009) Posterior C2 instrumentation: accuracy and risks associated with four techniques. In: 16th international meeting on advanced spine technologies, ViennaGoogle Scholar
  10. 10.
    Brazenor GA (2007) Comparison of multisegment anterior cervical fixation using bone graft versus a titanium rod and buttress prosthesis. Spine 32:63–71PubMedCrossRefGoogle Scholar
  11. 11.
    Brodke DS, Klimo P, bachus KN, Braun JT, Dailey AT (2006) Anterior cervical fixation: analysis of load-sharing and stability with use of static and dynamic plates. J Bone Joint Surg 88-A:1566–1573CrossRefGoogle Scholar
  12. 12.
    Cha SH, Kim C, Choi BK, Kim HJ, Baek SY (2007) C-arm assessment of cervical pedicle screw-coaxial fluoroscopy and oblique view. Eur Spine J 32:1721–1727Google Scholar
  13. 13.
    Cheng BC, Hafez MA, Cunningham B, Hassan S, Welch WC (2008) Biomechanical evaluation of occipitocervicothoracic fusion: impact of partial or sequential fixation. Spine J 8:821–826PubMedCrossRefGoogle Scholar
  14. 14.
    Dahdaleh NS, Nakamura S, Torner JC, Lim TH, Hitchon PW (2009) Biomechanical rigidity of cadaveric cervical spine with posterior versus combined posterior and anterior instrumentation. J Neurosurg Spine 10:133–138PubMedCrossRefGoogle Scholar
  15. 15.
    Dailey A, Fassett D, Finn M, Bacchus K, Brodke D (2008) Do dynamic cervical plates provide adequate stability in flexion distraction injuries? In: Annual meeting of the CSRS, Austin, TXGoogle Scholar
  16. 16.
    Dmitriev AE, Kuklo TR, Jr Lehman RA, Rosner MK (2007) Stabilizing potential of anterior, posterior, and circumferential fixation for multilevel cervical arthrodesis. Spine 32:E188–E196PubMedCrossRefGoogle Scholar
  17. 17.
    Do Koh Y, Lim TH, Won You J, Eck J, An HS (2001) A biomechanical comparison of modern anterior and posterior plate fixation of the cervical spine. Spine 26:15–21PubMedCrossRefGoogle Scholar
  18. 18.
    Dvorak MF, Pitzen T, Zhu Q, Gordon JD, Fisher CG, Oxland TR (2005) Anterior cervical plate fixation: a biomechanical study to evaluate the effects of plate design, endplate preparation, and bone mineral density. Spine 30:294–301PubMedCrossRefGoogle Scholar
  19. 19.
    Hart R, Gillard J, Prem S, Shea M, Kitchel S (2005) Comparison of stiffness and failure load of two cervical spine fixation techniques in an in vitro human model. J Spinal Disord Tech 18:S115–S118PubMedCrossRefGoogle Scholar
  20. 20.
    Hart RA, Tatsumi RL, Hiratzka JR, Yoo JU (2008) Perioperative complications of combined anterior and posterior cervical decompression and fusion crossing the cervico-thoracic junction. Spine 33:2887–2891PubMedCrossRefGoogle Scholar
  21. 21.
    Hasegawa K, Hirano T, Shimoda H, Homma T, Morita O (2008) Indications for cervical pedicle screw instrumentation in nontraumatic lesions. Spine 33:2284–2289PubMedCrossRefGoogle Scholar
  22. 22.
    Hostin RA, Wu C, Perra JH, Polly DW, Akesen B, Wroblewski M (2008) A biomechanical evaluation of three revision screw strategies for failed lateral mass fixation. Spine 33:2415–2421PubMedCrossRefGoogle Scholar
  23. 23.
    Ianuzzi A, Zambrano I, Tataria J, Ameerally A, Agulnick M, Little Goodwin JSL, Stephen M, Khalsa PS (2006) Biomechanical evaluation of surgical constructs for stabilization of cervical teardrop fractures. Spine J 6:514–523PubMedCrossRefGoogle Scholar
  24. 24.
    Isomi T, Panjabi MM, Wang JL, Vaccaro AR, Garfin SR, Patel T (1999) Stabilizing potential of anterior cervical plates in multilevel corpectomies. Spine 24:2219–2223PubMedCrossRefGoogle Scholar
  25. 25.
    Ito Y, Sugimoto Y, Tomioka M, Hasegawa Y, Nakago K, Yagata Y (2008) Clinical accuracy of 3D fluoroscopy-assisted cervical pedicle screw insertion. J Neurosurg Spine 9:450–453PubMedCrossRefGoogle Scholar
  26. 26.
    Johnston LT, Karaikovic EE, Lautenschlager EP, Marcu D (2006) Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths. Spine J 6:667–672PubMedCrossRefGoogle Scholar
  27. 27.
    Jones EL, Heller JG, Silcox DH, Hutton WC (1997) Cervical pedicle screws versus lateral mass screws: anatomic feasibility and biomechanical comparison. Spine 22:977–982PubMedCrossRefGoogle Scholar
  28. 28.
    Kast E, Mohr K, Richter HP, Börm W (2006) Complications of transpedicular screw fixation in the cervical spine. Eur Spine J 15:327–334PubMedCrossRefGoogle Scholar
  29. 29.
    Koller H, Acosta F, Tauber M, Fox M, Martin H, Forstner R, Augat P, Penzkofer R, Pirich C, Kässmann H, Resch H, Hitzl W (2008) Cervical anterior transpedicular screw fixation (ATPS)—Part II. Accuracy of manual insertion and pull-out strength of ATPS. Eur Spine J 17:539–555PubMedCrossRefGoogle Scholar
  30. 30.
    Koller H, Hempfing A, Acosta F, Fox M, Scheiter A, Tauber M, Holz U, Resch H, Hitzl W (2008) Cervical anterior transpedicular screw fixation. Part I: Study on morphological feasibility, indications, and technical prerequisites. Eur Spine J 17:523–538PubMedCrossRefGoogle Scholar
  31. 31.
    Koller H, Hempfing A, Ferraris L, Meier O, Metz-Stavenhagen P (2006) 4- and 5-level anterior fusions of the cervical spine: review of literature and clinical results. Eur Spine J 16:2055–2071CrossRefGoogle Scholar
  32. 32.
    Koller H, Hitzl W, Acosta F, Tauber M, Zenner J, Resch H, Yukawa Y, Meier O, Schmidt R, Mayer M (2009) In vitro study of accuracy of cervical pedicle screw insertion using an electronic conductivity device (ATPS part III). Eur Spine J 18(9):1300–1313Google Scholar
  33. 33.
    Kotani Y, Cunningham BW, Abumi K, McAfee PC (1994) Biomechanical analysis of cervical stabilization systems. An assessment of transpedicular screw fixation in the cervical spine. Spine 19:2529–2539PubMedCrossRefGoogle Scholar
  34. 34.
    Kothe R, Rüter W, Schneider E, Linke B (2004) Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine. Spine 29:1869–1875PubMedCrossRefGoogle Scholar
  35. 35.
    Kristof RA, Kiefer T, Thudium M, Ringel F, Stoffel M, Kovacs A, Mueller C-A (2009) Comparison of ventral corpectomy and plate-screw-instrumented fusion with dorsal laminectomy and rod-screw-instrumented fusion for treatment of at least two vertebral-level spondylotic cervical myelopathy. Eur Spine J 18(12):1951–1956Google Scholar
  36. 36.
    Lindsey C, Deviren V, Xu Z, Yeh RF, Puttlitz CM (2009) The effects of rod countering on spinal construct fatigue strength. Spine 31:1680–1687CrossRefGoogle Scholar
  37. 37.
    Lu J, Wu X, Li Yonggang, Kong X (2007) Surgical results of anterior corpectomy in the aged patients with cervical myelopathy. Eur Spine J 17:129–135PubMedCrossRefGoogle Scholar
  38. 38.
    Mummaneni PV, Dhall SS, Rodts GE, Haid RW (2008) Circumferential fusion for cervical kyphotic deformity. J Neurosurg Spine 9:515–521PubMedCrossRefGoogle Scholar
  39. 39.
    O’Brien JR, Dmitriev AE, Yu W, Gelb D, Ludwig S (2009) Posterior-only stabilization of 2-column and 3-column injuries at the cervicothoracic junction. J Spinal Disord 22:340–346CrossRefGoogle Scholar
  40. 40.
    O’Shaughnessy BA, Liu JC, Hsieh PC, Koski TR, Ganju A, Ondra SL (2008) Surgical treatment of fixed cervical kyphosis with myelopathy. Spine 33:771–778PubMedCrossRefGoogle Scholar
  41. 41.
    Panjabi MM, Isomi T, Wang JL (1999) Loosening at the screw-vertebra junction in multilevel anterior cervical plate constructs. Spine 24:2383–2388PubMedCrossRefGoogle Scholar
  42. 42.
    Panjabi MM, Krag M, Summers D, videmann T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3:292–300PubMedCrossRefGoogle Scholar
  43. 43.
    Porter RW, Crawford NR, Chamberlain RH, Park SC, Detwiler PW, Apostolides PJ, Sonntag VKH (2003) Biomechanical analysis of multilevel cervical corpectomy and plate constructs. J Neurosurg 99:98–103PubMedGoogle Scholar
  44. 44.
    Rath SA, Moszko S, Schäffner PM, Cantone G, Braun V, Richter HP, Antoniadis G (2008) Accuracy of pedicle screw insertion in the cervical spine for internal fixation using frameless stereotactic guidance. J Neurosurg Spine 8:237–245PubMedCrossRefGoogle Scholar
  45. 45.
    Ratliff J, Cooper PR (2003) Cervical laminoplasty: a critical review. J Neurosurg 98:230–238PubMedGoogle Scholar
  46. 46.
    Sakamoto T, Neo M, Nakamura T (2004) Transpedicular screw placement evaluated by axial computed tomography of the cervical pedicle. Spine 22:2510–2514CrossRefGoogle Scholar
  47. 47.
    Sakaura H, Hosono N, Mukai Y, Ishii T, Iwasaki M, Yoshikawa H (2005) Long-term outcome of laminoplasty for cervical myelopathy due to disc herniation: a comparative study of laminoplasty and anterior spinal fusion. Spine 30:756–759PubMedCrossRefGoogle Scholar
  48. 48.
    Sandler AJ, Dvorak J, Humke T, Grob D, Daniels W (1996) The effectiveness of various cervical orthoses. Spine 21:1624–1629PubMedCrossRefGoogle Scholar
  49. 49.
    Schlenk RP, Stewart T, Benzel EC (2003) The biomechanics of iatrogenic spinal destabilization and implant failure. Neurosurg Focus 15(3):E2Google Scholar
  50. 50.
    Schmidt R, Wilke HJ, Claes L, Puhl W, Richter M (2005) Effect of constrained posterior screw and rod systems for primary stability: biomechanical in vitro comparison of various instrumentations in a single-level corpectomy model. Eur Spine J 14:372–380PubMedCrossRefGoogle Scholar
  51. 51.
    Schmidt R, Wilke HJ, Claes L, Puhl W, Richter M (2003) Pedicle screws enhance primary stability in multilevel cervical corpectomies: biomechanical in vitro comparison of different implants including constrained and nonconstrained posterior instruments. Spine 16:1821–1828CrossRefGoogle Scholar
  52. 52.
    Schneider AM, Hipp JA, Nguyen L, Reitman CA (2007) Reduction in head and intervertebral motion provided by 7 contemporary cervical orthoses in 45 individuals. Spine 32:E-1–E-6CrossRefGoogle Scholar
  53. 53.
    Sembrano JN, Mehbod AA, Garvey TA, Denis F, Perra JH, Schwender JD, Transfeldt EE, Winter RB, Wroblewski M (2009) A concomitant posterior approach improves fusion rates but not overall reoperation rates in multilevel cervical fusion for spondylosis. J Spinal Disord Tech 22:162–169PubMedCrossRefGoogle Scholar
  54. 54.
    Singh K, Vaccaro AR, Kim J, Lorenz EP, Lim TH, An HS (2003) Biomechanical comparison of cervical spine reconstructive techniques after a multilevel corpectomy of the cervical spine. Spine 28:2352–2357, 2358Google Scholar
  55. 55.
    Steinmetz MP, Stewart TJ, Kager CD, Benzel EC, Vaccaro AR (2007) Cervical deformity correction. Neurosurg 60(Suppl):S90–S97CrossRefGoogle Scholar
  56. 56.
    Suda K, Kajino T, Moridaira H, Limoto S, Taneichi H (2008) How to avoid fatal vascular complications caused by pedicle screws—surgical strategy for safe screw placement. Spineweek, GenevaGoogle Scholar
  57. 57.
    Wei-bing X, Wun-Jer S, Lv Gang, Yue Z, Ming-xi J, Lian-shun J (2009) Reconstructive techniques study after anterior decompression of multilevel cervical spondylotic myelopathy. J Spinal Disord Tech 22:511–515PubMedCrossRefGoogle Scholar
  58. 58.
    Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3:91–97PubMedCrossRefGoogle Scholar
  59. 59.
    Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251:15–19PubMedCrossRefGoogle Scholar
  60. 60.
    Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154PubMedCrossRefGoogle Scholar
  61. 61.
    Wolfa CE (2006) Anatomical, biomechanical, and practical considerations in posterior occipitocervical instrumentation. Spine J 6:225S–232SCrossRefGoogle Scholar
  62. 62.
    Yukawa Y, Kato F, Ito K, Horie Y, Hida T, Nakashima H, Machino M (2008) Placement and complications of cervical pedicle screws in 144 cervical trauma patients using pedicle axis view techniques by fluoroscope. Eur Spine J 18:1293–1299CrossRefGoogle Scholar
  63. 63.
    Yukawa Y, Kato F, Ito K, Nakashima H, Machino M (2009) Anterior cervical pedicle screw and plate fixation using fluoroscope-assisted pedicle axis view imaging: a preliminary report of a new cervical reconstruction technique. Eur Spine J 18:911–916PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Heiko Koller
    • 1
    • 2
  • Rene Schmidt
    • 3
  • Michael Mayer
    • 1
  • Wolfgang Hitzl
    • 4
  • Juliane Zenner
    • 2
  • Stefan Middendorf
    • 5
  • Nicolaus Gräf
    • 5
  • H. Resch
    • 1
  • Hans-Joachim Willke
    • 5
  1. 1.Department for Traumatology and Sport InjuriesParacelsus Medical UniversitySalzburgAustria
  2. 2.German Scoliosis Center, Werner-Wicker-ClinicBad WildungenGermany
  3. 3.Department of Orthopedics and TraumatologyUniversity Medical CenterMannheimGermany
  4. 4.Research Office, Department of BiostatisticsParacelsus Medical UniversitySalzburgAustria
  5. 5.Department of Orthopedic Research and BiomechanicsUniversity of UlmUlmGermany

Personalised recommendations