European Spine Journal

, Volume 19, Issue 10, pp 1728–1734 | Cite as

Pre-existent vertebral rotation in the human spine is influenced by body position

  • Michiel M. A. Janssen
  • Koen L. Vincken
  • Bastiaan Kemp
  • Marina Obradov
  • Marinus de Kleuver
  • Max A. Viergever
  • René M. Castelein
  • Lambertus W. Bartels
Original Article

Abstract

Both the humans as well as the quadrupedal spine have been shown to exhibit a pattern of pre-existent rotation that is similar in direction to what is found in the most common types of idiopathic scoliosis. It has been postulated that human bipedalism introduces forces to the spine that increase a tendency of the vertebrae to rotate. The objective of this study was to examine the effect of body position on vertebral rotation in vivo. Thirty asymptomatic volunteers underwent magnetic resonance imaging scanning of the spine (T2–L5) in three different body positions; upright, quadrupedal-like (on hands-and-knees) and supine. Vertebral rotation in the local transverse plane was measured according to a pre-established method and compared at different spinal levels between the three body positions. It was shown that in all three positions the mid- and lower thoracic vertebrae were predominantly rotated to the right. However, vertebral rotation was significantly less in the quadrupedal position than in both the standing upright and supine positions.

Keywords

Scoliosis Etiology Human bipedalism Upright MRI Vertebral rotation Dorsally directed shear loads 

References

  1. 1.
    Xiong B, Sevastik J, Hedlund R, Sevastik B (1993) Segmental vertebral rotation in early scoliosis. Eur Spine J 2:37–41CrossRefPubMedGoogle Scholar
  2. 2.
    Kouwenhoven JW, Vincken KL, Bartels LW, Castelein RM (2006) Analysis of preexistent vertebral rotation in the normal spine. Spine 31:1467–1472. doi:10.1097/01.brs.0000219938.14686.b3 CrossRefPubMedGoogle Scholar
  3. 3.
    Kouwenhoven JW, Vincken KL, Bartels LW, Meij BP, Oner FC, Castelein RM (2006) Analysis of preexistent vertebral rotation in the normal quadruped spine. Spine 31:E754–E758. doi:10.1097/01.brs.0000240209.85498.01 CrossRefPubMedGoogle Scholar
  4. 4.
    Kouwenhoven JW, Bartels LW, Vincken KL, Viergever MA, Verbout AJ, Delhaas T, Castelein RM (2007) The relation between organ anatomy and pre-existent vertebral rotation in the normal spine: magnetic resonance imaging study in humans with situs inversus totalis. Spine 32:1123–1128. doi:10.1097/01.brs.0000261563.75469.b0 CrossRefPubMedGoogle Scholar
  5. 5.
    Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428CrossRefPubMedGoogle Scholar
  6. 6.
    Naique SB, Porter R, Cunningham AA, Hughes SP, Sanghera B, Amis AA (2003) Scoliosis in an Orangutan. Spine 28:E143–E145. doi:10.1097/01.BRS.0000051928.68584.A4 CrossRefPubMedGoogle Scholar
  7. 7.
    Arkin AM (1949) The mechanism of the structural changes in scoliosis. J Bone Joint Surg 31A(3):519–528PubMedGoogle Scholar
  8. 8.
    Hogervorst T, Bouma HW, De Vos J (2009) Evolution of the hip and pelvis. Acta Orthop (Suppl 336)80:1–39CrossRefGoogle Scholar
  9. 9.
    Alexander RM (2004) Bipedal animals, and their differences from humans. J Anat 204:321–330. doi:10.1111/j.0021-8782.2004.00289.x CrossRefPubMedGoogle Scholar
  10. 10.
    D’Août K, Aerts P, De Clercq D, De Meester K, Van Elsacker L (2002) Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus). Am J Phys Anthropol 119:37–51. doi:10.1002/ajpa.10112 CrossRefPubMedGoogle Scholar
  11. 11.
    Castelein RM, van Dieen JH, Smit TH (2005) The role of dorsal shear forces in the pathogenesis of adolescent idiopathic scoliosis—a hypothesis. Med Hypotheses 65:501–508CrossRefPubMedGoogle Scholar
  12. 12.
    Kouwenhoven JW, Smit TH, van der Veen AJ, Kingma I, van Dieën JH, Castelein RM (2007) Effects of dorsal versus ventral shear loads on the rotational stability of the thoracic spine: a biomechanical porcine and human cadaveric study. Spine 32:2545–2550. doi:10.1097/BRS.0b013e318158cd86 CrossRefPubMedGoogle Scholar
  13. 13.
    Mau H (1972) Etiology of idiopathic infantile scoliosis. Reconstr Surg Traumatol 13:184–190PubMedGoogle Scholar
  14. 14.
    Stokes IA (2007) Analysis and simulation of progressive adolescent scoliosis by biomechanical growth modulation. Eur Spine J 16(10):1621–1628CrossRefPubMedGoogle Scholar
  15. 15.
    Janssen MM, Drevelle X, Humbert L, Skalli W, Castelein RM (2009) Differences in male and female spino-pelvic alignment in asymptomatic young adults: a three-dimensional analysis using upright low-dose digital biplanar X-rays. Spine 34(23):E826–E832CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Michiel M. A. Janssen
    • 1
  • Koen L. Vincken
    • 2
  • Bastiaan Kemp
    • 2
  • Marina Obradov
    • 3
  • Marinus de Kleuver
    • 4
  • Max A. Viergever
    • 2
  • René M. Castelein
    • 1
  • Lambertus W. Bartels
    • 2
  1. 1.Department of Orthopaedics, G05.228University Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
  3. 3.Department of RadiologySint MaartenskliniekNijmegenThe Netherlands
  4. 4.Department of OrthopaedicsSint MaartenskliniekNijmegenThe Netherlands

Personalised recommendations