European Spine Journal

, Volume 19, Issue 10, pp 1761–1770

Immunohistochemical identification of notochordal markers in cells in the aging human lumbar intervertebral disc

  • Christoph Weiler
  • Andreas G. Nerlich
  • Rainer Schaaf
  • Beatrice E. Bachmeier
  • Karin Wuertz
  • Norbert Boos
Original Article

Abstract

The fate of notochord cells during disc development and aging is still a subject of debate. Cells with the typical notochordal morphology disappear from the disc within the first decade of life. However, the pure morphologic differentiation of notochordal from non-notochordal disc cells can be difficult, prompting the use of cellular markers. Previous reports on these notochordal cell markers only explored the occurrence in young age groups without considering changes during disc degeneration. The aim of this study, therefore, was to investigate presence, localization, and abundance of cells expressing notochordal cell markers in human lumbar discs during disc development and degeneration. Based on pilot studies, cytokeratins CK-8, -18 and -19 as well as Galectin-3 were chosen from a broad panel of potential notochordal cell markers and used for immunohistochemical staining of 30 human lumbar autopsy samples (0–86 years) and 38 human surgical disc samples (26–69 years). In the autopsy group, 80% of fetal to adolescent discs (0–17 years) and 100% of young adult discs (18–30 years) contained many cells with positive labeling. These cells were strongly clustered and nearly exclusively located in areas with granular changes (or other matrix defects), showing predominantly a chondrocytic morphology as well as (in a much lesser extent) a fibrocytic phenotype. In mature discs (31–60 years) and elderly discs (≥60 years) only 25 and 22–33%, respectively, contained few stained nuclear cells, mostly associated with matrix defects. In the surgical group, only 16% of samples from young adults (≤47 years) exhibited positively labeled cells whereas mature to old surgical discs (>47 years) contained no labeled cells. This is the first study describing the presence and temporo-spatial localization of cells expressing notochordal cell markers in human lumbar intervertebral discs of all ages and variable degree of disc degeneration. Our findings indicate that cells with a (immunohistochemically) notochord-like phenotype are present in a considerable fraction of adult lumbar intervertebral discs. The presence of these cells is associated with distinct features of (early) age-related disc degeneration, particularly with granular matrix changes.

Keywords

Notochordal cells Aging Disc degeneration Cell differentiation 

References

  1. 1.
    Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17:2–19CrossRefPubMedGoogle Scholar
  2. 2.
    Almkvist J, Karlsson A (2004) Galectins as inflammatory mediators. Glycoconj J 19:575–581CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson DG, Izzo MW, Hall DJ, Vaccaro AR, Hilibrand A, Arnold W, Tuan RS, Albert TJ (2002) Comparative gene expression profiling of normal and degenerative discs: analysis of a rabbit annular laceration model. Spine 27:1291–1296CrossRefPubMedGoogle Scholar
  4. 4.
    Boos N, Nerlich AG, Wiest I, von der MK, Aebi M (1997) Immunolocalization of type X collagen in human lumbar intervertebral discs during ageing and degeneration. Histochem Cell Biol 108:471–480Google Scholar
  5. 5.
    Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG (2002) Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 27:2631–2644CrossRefPubMedGoogle Scholar
  6. 6.
    Chen HY, Liu FT, Yang RY (2005) Roles of galectin-3 in immune responses. Arch Immunol Ther Exp (Warsz) 53:497–504Google Scholar
  7. 7.
    Choi KS, Cohn MJ, Harfe BD (2008) Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn 237:3953–3958CrossRefPubMedGoogle Scholar
  8. 8.
    Dumic J, Dabelic S, Flogel M (2006) Galectin-3: an open-ended story. Biochim Biophys Acta 1760:616–635PubMedGoogle Scholar
  9. 9.
    Erwin WM, Ashman K, O’donnel P, Inman RD (2006) Nucleus pulposus notochord cells secrete connective tissue growth factor and Up-regulate proteoglycan expression by intervertebral disc chondrocytes. Arthritis Rheum 54:3859–3867CrossRefPubMedGoogle Scholar
  10. 10.
    Erwin WM, Inman RD (2006) Notochord cells regulate intervertebral disc chondrocyte proteoglycan production and cell proliferation. Spine 31:1094–1099CrossRefPubMedGoogle Scholar
  11. 11.
    Goetz W, Kasper M, Fischer G, Herken R (1995) Intermediate filament typing of the human embryonic and fetal notochord. Cell Tissue Res 280:455–462CrossRefGoogle Scholar
  12. 12.
    Goetz W, Kasper M, Miosge N, Hughes RC (1997) Detection and distribution of the carbohydrate binding protein galectin-3 in human notochord, intervertebral disc and chordoma. Differentiation 62:149–157Google Scholar
  13. 13.
    Guehring T, Wilde G, Sumner M, Grunhagen T, Karney GB, Tirlapur UK, Urban JP (2009) Notochordal intervertebral disc cells: sensitivity to nutrient deprivation. Arthritis Rheum 60:1026–1034CrossRefPubMedGoogle Scholar
  14. 14.
    Guevremont M, Martel-Pelletier J, Boileau C, Liu FT, Richard M, Fernandes JC, Pelletier JP, Reboul P (2004) Galectin-3 surface expression on human adult chondrocytes: a potential substrate for collagenase-3. Ann Rheum Dis 63:636–643CrossRefPubMedGoogle Scholar
  15. 15.
    Hansen HJ (1951) A pathologic-anatomical interpretation of disc degeneration in dogs. Acta Orthop Scand 20:280–293CrossRefPubMedGoogle Scholar
  16. 16.
    Heiberg J (1880) Über die Zwischenwirbelgelenke und Knochenkerne der Wirbelsäule bei den Neugeborenen und ihre Verhältnisse zur Chorda. Mitteilungen aus der Embryologie, Institut der Universität Wien, pp 119–129Google Scholar
  17. 17.
    Horwitz T (ed) (1977) The Human Notochord: a study of its development and regression, variations, and pathologic derivative, chordoma. IndianapolisGoogle Scholar
  18. 18.
    Hunter CJ, Matyas JR, Duncan NA (2003) The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng 9:667–677CrossRefPubMedGoogle Scholar
  19. 19.
    Hunter CJ, Matyas JR, Duncan NA (2004) Cytomorphology of notochordal and chondrocytic cells from the nucleus pulposus: a species comparison. J Anat 205:357–362CrossRefPubMedGoogle Scholar
  20. 20.
    Iacobini C, Menini S, Oddi G, Ricci C, Amadio L, Pricci F, Olivieri A, Sorcini M, Di Mario U, Pesce C, Pugliese G (2004) Galectin-3/AGE-receptor 3 knockout mice show accelerated AGE-induced glomerular injury: evidence for a protective role of galectin-3 as an AGE receptor. FASEB J 18:1773–1775PubMedGoogle Scholar
  21. 21.
    Johnson WE, Roberts S (2003) Human intervertebral disc cell morphology and cytoskeletal composition: a preliminary study of regional variations in health and disease. J Anat 203:605–612CrossRefPubMedGoogle Scholar
  22. 22.
    Karlsson A, Follin P, Leffler H, Dahlgren C (1998) Galectin-3 activates the NADPH-oxidase in exudated but not peripheral blood neutrophils. Blood 91:3430–3438PubMedGoogle Scholar
  23. 23.
    Kim KW, Kim YS, Ha KY, Woo YK, Park JB, Park WS, An HS (2005) An autocrine or paracrine Fas-mediated counterattack: a potential mechanism for apoptosis of notochordal cells in intact rat nucleus pulposus. Spine 30:1247–1251CrossRefPubMedGoogle Scholar
  24. 24.
    Kim KW, Lim TH, Kim JG, Jeong ST, Masuda K, An HS (2003) The origin of chondrocytes in the nucleus pulposus and histologic findings associated with the transition of a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact rabbit intervertebral discs. Spine 28:982–990CrossRefPubMedGoogle Scholar
  25. 25.
    Kozaci LD, Guner A, Oktay G, Guner G (2006) Alterations in biochemical components of extracellular matrix in intervertebral disc herniation: role of MMP-2 and TIMP-2 in type II collagen loss. Cell Biochem Funct 24:431–436CrossRefPubMedGoogle Scholar
  26. 26.
    Krzeslak A, Lipinska A (2004) Galectin-3 as a multifunctional protein. Cell Mol Biol Lett 9:305–328PubMedGoogle Scholar
  27. 27.
    Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F (2004) Introduction to galectins. Glycoconj J 19:433–440CrossRefPubMedGoogle Scholar
  28. 28.
    Liu FT (2005) Regulatory roles of galectins in the immune response. Int Arch Allergy Immunol 136:385–400CrossRefPubMedGoogle Scholar
  29. 29.
    Naka T, Iwamoto Y, Shinohara N, Chuman H, Fukui M, Tsuneyoshi M (1997) Cytokeratin subtyping in chordomas and the fetal notochord: an immunohistochemical analysis of aberrant expression. Mod Pathol 10:545–551PubMedGoogle Scholar
  30. 30.
    Nerlich AG, Schleicher ED, Boos N (1997) 1997 Volvo Award winner in basic science studies. Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine 22:2781–2795CrossRefPubMedGoogle Scholar
  31. 31.
    Nerlich AG, Weiler C, Zipperer J, Narozny M, Boos N (2002) Immunolocalization of phagocytic cells in normal and degenerated intervertebral discs. Spine 27:2484–2490CrossRefPubMedGoogle Scholar
  32. 32.
    Ochieng J, Furtak V, Lukyanov P (2004) Extracellular functions of galectin-3. Glycoconj J 19:527–535CrossRefPubMedGoogle Scholar
  33. 33.
    Oguz E, Tsai TT, Di Martino A, Guttapalli A, Albert TJ, Shapiro IM, Risbud MV (2007) Galectin-3 expression in the intervertebral disc: a useful marker of the notochord phenotype? Spine 32:9–16CrossRefPubMedGoogle Scholar
  34. 34.
    Pazzaglia UE, Salisbury JR, Byers PD (1989) Development and involution of the notochord in the human spine. J R Soc Med 82:413–415PubMedGoogle Scholar
  35. 35.
    Peacock A (1951) Observations on the prenatal development of the intervertebral disc in man. J Anat 85:260–274PubMedGoogle Scholar
  36. 36.
    Peacock A (1952) Observations on the postnatal structure of the intervertebral disc in man. J Anat 86:162–179PubMedGoogle Scholar
  37. 37.
    Pieters RJ (2006) Inhibition and detection of galectins. Chembiochem 7:721–728CrossRefPubMedGoogle Scholar
  38. 38.
    Pokharna HK, Phillips FM (1998) Collagen crosslinks in human lumbar intervertebral disc aging. Spine 23:1645–1648CrossRefPubMedGoogle Scholar
  39. 39.
    Rastogi A, Thakore P, Leung A, Benavides M, Machado M, Morschauser MA, Hsieh AH (2009) Environmental regulation of notochordal gene expression in nucleus pulposus cells. J Cell Physiol 220:698–705CrossRefPubMedGoogle Scholar
  40. 40.
    Reboul P, Martel-Pelletier J, Pelletier JP (2004) Galectin-3 in osteoarthritis: when the fountain of youth doesn’t deliver its promises. Curr Opin Rheumatol 16:595–598CrossRefPubMedGoogle Scholar
  41. 41.
    Roberts S, Caterson B, Evans H, Eisenstein SM (1994) Proteoglycan components of the intervertebral disc and cartilage endplate: an immunolocalization study of animal and human tissues. Histochem J 26:402–411CrossRefPubMedGoogle Scholar
  42. 42.
    Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC, Eisenstein SM (2000) Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine 25:3005–3013CrossRefPubMedGoogle Scholar
  43. 43.
    Salisbury JR (1993) The pathology of the human notochord. J Pathol 171:253–255CrossRefPubMedGoogle Scholar
  44. 44.
    Sato S, Nieminen J (2004) Seeing strangers or announcing “danger”: galectin-3 in two models of innate immunity. Glycoconj J 19:583–591CrossRefPubMedGoogle Scholar
  45. 45.
    Sivan SS, Tsitron E, Wachtel E, Roughley P, Sakkee N, van der HF, Degroot J, Maroudas A (2006) Age-related accumulation of pentosidine in aggrecan and collagen from normal and degenerate human intervertebral discs. Biochem J 399:29–35Google Scholar
  46. 46.
    Stevens JW, Kurriger GL, Carter AS, Maynard JA (2000) CD44 expression in the developing and growing rat intervertebral disc. Dev Dyn 219:381–390CrossRefPubMedGoogle Scholar
  47. 47.
    Stosiek P, Kasper M, Karsten U (1988) Expression of cytokeratin and vimentin in nucleus pulposus cells. Differentiation 39:78–81CrossRefPubMedGoogle Scholar
  48. 48.
    Thornalley PJ (1998) Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell Mol Biol (Noisy -le-grand) 44:1013–1023Google Scholar
  49. 49.
    Trout JJ, Buckwalter JA, Moore KC (1982) Ultrastructure of the human intervertebral disc: II. Cells of the nucleus pulposus. Anat Rec 204:307–314CrossRefPubMedGoogle Scholar
  50. 50.
    Trout JJ, Buckwalter JA, Moore KC, Landas SK (1982) Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age. Tissue Cell 14:359–369CrossRefPubMedGoogle Scholar
  51. 51.
    Virchow R (1857) Untersuchungen über die Entwicklungen des Schädelgrundes im gesunden und krankhaften Zustande und über den Einfluss derselben auf Schädelform, Gesichtsbildung und Gehirnbahn. G. Reimers, BerlinGoogle Scholar
  52. 52.
    Walmsley R (1953) The development and growth of the intervertebral disc. Edinburgh Med J 60:341–364Google Scholar
  53. 53.
    Weiler C, Nerlich AG, Zipperer J, Bachmeier BE, Boos N (2002) 2002 SSE Award Competition in Basic Science: expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J 11:308–320CrossRefPubMedGoogle Scholar
  54. 54.
    Weishaupt D, Zanetti M, Hodler J, Min K, Fuchs B, Pfirrmann CW, Boos N (2001) Painful lumbar disk derangement: relevance of endplate abnormalities at MR imaging. Radiology 218:420–427PubMedGoogle Scholar
  55. 55.
    Weiss A (1901) Die Entwicklung der Wirbelsäule der weissen Ratte, besonders der vordersten Halswirbel. Zeitsch Wissenschaft Zool 69:492–533Google Scholar
  56. 56.
    Yamaguchi T, Suzuki S, Ishiiwa H, Shimizu K, Ueda Y (2004) Benign notochordal cell tumors: a comparative histological study of benign notochordal cell tumors, classic chordomas, and notochordal vestiges of fetal intervertebral discs. Am J Surg Pathol 28:756–761CrossRefPubMedGoogle Scholar
  57. 57.
    Yamaoka A, Kuwabara I, Frigeri LG, Liu FT (1995) A human lectin, galectin-3 (epsilon bp/Mac-2), stimulates superoxide production by neutrophils. J Immunol 154:3479–3487PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Christoph Weiler
    • 1
  • Andreas G. Nerlich
    • 2
  • Rainer Schaaf
    • 2
  • Beatrice E. Bachmeier
    • 3
  • Karin Wuertz
    • 4
  • Norbert Boos
    • 4
    • 5
  1. 1.Institute of PathologyLudwig-Maximilians-UniversityMunichGermany
  2. 2.Department of PathologyAcademic Teaching Hospital Munich-BogenhausenMunichGermany
  3. 3.Department of Clinical Chemistry and Clinical BiochemistryLudwig-Maximilians-UniversityMunichGermany
  4. 4.Spine Research Group, Centre of Applied Biotechnology and Molecular MedicineUniversity of ZurichZurichSwitzerland
  5. 5.Department of Spinal Surgery, University Hospital BalgristUniversity of ZurichZurichSwitzerland

Personalised recommendations