Advertisement

European Spine Journal

, Volume 19, Supplement 1, pp 40–47 | Cite as

Thoracolumbar burst fractures without neurological deficit: the role for conservative treatment

  • S. RajasekaranEmail author
Review Article

Abstract

Burst fractures are common in the thoracolumbar junction and account for 17% of all major spinal fractures. There is a considerable controversy on the efficacy of conservative treatment and the need for surgical intervention. Need for additional stability, prevention of neurological deterioration, attainment of canal clearance, prevention of kyphosis and early relief of pain are the commonly quoted reasons for surgical intervention. However, a careful review of literature does not validate any of the above arguments. The available randomised control trials prove that the results of conservative treatment for burst fractures are equal to that of surgery and also with lesser complications. Surgery for burst fractures may, however, have definite advantages in patients with polytrauma or in the rare event of deteriorating neurology. It is also important for the treating surgeon to clearly distinguish a burst fracture from other inherently unstable injuries like fracture dislocations, chance fractures and flexion rotation injuries which require surgical stabilisation.

Keywords

Burst fractures Conservative treatment Deformity Neurological deficit 

Notes

Acknowledgments

The author thanks Dr Kamath HD Vijay and Dr J Naresh Babu for the help in preparation of the manuscript.

Conflict of interest statement

None of the authors has any potential conflict of interest.

References

  1. 1.
    Denis F (1983) The three-column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 8:817–831CrossRefPubMedGoogle Scholar
  2. 2.
    Tator CH, Koyanagi I (1997) Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg 86:483–492Google Scholar
  3. 3.
    Gertzbein SD (1992) Scoliosis Research Society. Multicenter spine fracture study. Spine 17(5):528–540Google Scholar
  4. 4.
    Ballock RT, Mackersie R, Abitbol JJ, Cervilla V, Resnick D, Garfin SR (1992) Can burst fractures be predicted from plain radiographs? J Bone Joint Surg Br 74:147–150PubMedGoogle Scholar
  5. 5.
    McAfee PC, Yuan HA, Lasda NA (1982) The unstable burst fracture. Spine 7:365–373CrossRefPubMedGoogle Scholar
  6. 6.
    Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3(4):184–201CrossRefPubMedGoogle Scholar
  7. 7.
    Trafton PG, Boyd CA (1984) Computed tomography of thoracic and lumbar spine injuries. J Trauma 24:506–515CrossRefPubMedGoogle Scholar
  8. 8.
    Weinstein JN, Collalto P, Lehmann TR (1988) Thoracolumbar “burst” fractures treated conservatively: a long-term follow-up. Spine 13:33–38CrossRefPubMedGoogle Scholar
  9. 9.
    McLain RF, Sparling E, Benson (1993) Early failure of short-segment pedicle instrumentation for thoracolumbar fractures. A preliminary report. J Bone Joint Surg [Am] 75:162–167Google Scholar
  10. 10.
    Stephens GC, Devito DP, McNamara MJ (1992) Segmental fixation of lumbar burst fractures with Cotrel-Dubousset instrumentation. J Spinal Disord 5:344–348CrossRefPubMedGoogle Scholar
  11. 11.
    Leybaert L, de Hemptinne A (1996) Changes of intracellular free calcium following mechanical injury in a spinal cord slice preparation. Exp Brain Res 112:392–402CrossRefPubMedGoogle Scholar
  12. 12.
    Wood K, Buttermann G,Mehbod A, Garvey T, Jhanjee R, Sechriest V (2003) Operative compared with nonoperative treatment of a thoracolumbar burst fracture without neurological deficit. A prospective, randomized study. J Bone Joint Surg 85-A(5):773–781Google Scholar
  13. 13.
    Hall ED, Braughler JM (1993) Free radicals in CNS injury. Res Publ Assoc Res Nerv Ment Dis 71:81–105PubMedGoogle Scholar
  14. 14.
    Braughler JM, Hall ED (1992) Involvement of lipid peroxidation in CNS injury. J Neurotrauma 9(Suppl 1):1–7Google Scholar
  15. 15.
    Hall ED (1988) Effects of the 21-aminosteroid U74006F on posttraumatic spinal cord ischemia in cats. J Neurosurg 68:462–465CrossRefPubMedGoogle Scholar
  16. 16.
    Hall ED (1995) Inhibition of lipid peroxidation in central nervous system trauma and ischemia. J Neurol Sci 134(Suppl):79–83Google Scholar
  17. 17.
    Lu J, Ashwell KW, Waite P (2000) Advances in secondary spinal cord injury: role of apoptosis. Spine 25:1859–1866CrossRefPubMedGoogle Scholar
  18. 18.
    Muller U, Berlemann U, Sledge J et al (1999) Treatment of thoracolumbar burst fractures without neurological deficits by indirect reduction and posterior instrumentation: bisegmental stabilization with monosegmental fusion. Eur Spine J 8:284–289CrossRefPubMedGoogle Scholar
  19. 19.
    Shen WJ, Liu TJ, Shen YS (2001) Nonoperative treatment versus posterior fixation for thoracolumbar junction burst fractures without neurologic deficit. Spine 26:1338–1345CrossRefGoogle Scholar
  20. 20.
    Denis F, Armstrong GW, Searls K, Matta L (1984) Acute thoracolumbar burst fractures in the absence of neurologic deficit A comparison between operative and nonoperative treatment. Clin Orthop 189:142–149PubMedGoogle Scholar
  21. 21.
    Mumford J, Weinstein JN, Spratt KF, Goel VK (1993) Thoracolumbar burst fractures. The clinical efficacy and outcome of nonoperative management. Spine 18:955–970CrossRefPubMedGoogle Scholar
  22. 22.
    Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75:15–26Google Scholar
  23. 23.
    Knight RQ, Stornelli DP, Chan DP, Devanny JR, Jackson KV (1993) Comparison of operative versus nonoperative treatment of lumbar burst fractures. Clin Orthop 293:112–121PubMedGoogle Scholar
  24. 24.
    Dall DE, Stauffer ES (1988) Neurologic injury and recovery patterns in burst fractures at the T12 or L1 motion segment. Clin Orthop 233:171–176PubMedGoogle Scholar
  25. 25.
    Carl AL, Tromanhauser SG, Roger DJ (1992) Pedicle screw instrumentation for thoracolumbar burst fractures and fracture-dislocations. Spine 17(Suppl 8):S317–324PubMedCrossRefGoogle Scholar
  26. 26.
    Fan KF, Tu YK, Hsu RW et al (1997) The high fixation failure rate of short segment pedicle instrumentation for unstable thoracolumbar burst fractures. Orthop Trans 21:267Google Scholar
  27. 27.
    Domenicucci M, Preite R, Ramieri A et al (1996) Thoracolumbar fractures without neurological involvement: surgical or conservative treatment? J Neurosurg Sci 40:1–10PubMedGoogle Scholar
  28. 28.
    Seybold EA, Sweeny CA, Fredrickson BE et al (1999) Functional outcome of low lumbar burst fractures. A multicenter review of operative and nonoperative treatment from L3–L5. Spine 15:2154–2161CrossRefGoogle Scholar
  29. 29.
    Vaccaro AR, Lehman RA Jr., Hurlbert RJ et al (2005) A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine 30(20):2325–2333Google Scholar
  30. 30.
    Yazici M, Atilla B, Tepe S, Calisir A (1996) Spinal canal remodeling in burst fractures of the thoracolumbar spine: a computerized tomographic comparison between operative and nonoperative treatment. J Spinal Disord 9:409–413CrossRefPubMedGoogle Scholar
  31. 31.
    Tropiano P, Huang RC, Louis CA, Poitout DG et al (2003) Functional and radiographic outcome of thoracolumbar and lumbar burst fractures managed by closed orthopaedic reduction and casting. Spine 28(21):2459–2465CrossRefPubMedGoogle Scholar
  32. 32.
    Chow GH, Nelson BJ, Gebhard JS, Brugman JL, Brown CW, Donaldson DH (1996) Functional outcome of thoracolumbar burst fractures managed with hyperextension casting or bracing and early mobilization. Spine 21:2170–2175CrossRefPubMedGoogle Scholar
  33. 33.
    Cantor JB, Lebwohl NH, Garvey T, Eismont FJ (1993) Nonoperative management of stable thoracolumbar burst fractures with early ambulation and bracing. Spine 18:971–976CrossRefPubMedGoogle Scholar
  34. 34.
    Chan DP, Seng NK, Kaan KT (1993) Nonoperative treatment in burst fractures of the lumbar spine (L2–L5) without neurologic deficits. Spine 18(3):320–325CrossRefPubMedGoogle Scholar
  35. 35.
    Shen WJ, Shen YS (1999) Nonsurgical treatment of three-column thoracolumbar junction burst fractures without neurologic deficit. Spine 24:412–415CrossRefPubMedGoogle Scholar
  36. 36.
    White AA, Panjabi MM (1978) Clinical biomechanics of the spine. Lippincott, PhiladelphiaGoogle Scholar
  37. 37.
    Celibi L, Muratli HH, Dogan O et al (2004) The efficacy of non-operative treatment of burst fractures of the thoracolumbar vertebrae. Acta Orthop Traumatol Turc 38(1):16–22Google Scholar
  38. 38.
    Boerger TO, Limb D, Dickson RA (2000) Does ‘canal clearance’ affect neurological outcome after thoracolumbar burst fractures? JBJS(Br) 82-B:629–635Google Scholar
  39. 39.
    Herndon WA, Galloway D (1988) Neurologic return versus cross-sectional canal area in incomplete thoracolumbar spinal cord injuries. J Trauma 28:680–683CrossRefPubMedGoogle Scholar
  40. 40.
    Mohanty SP, Venkatram N (2002) Does neurological recovery in thoracolumbar and lumbar burst fractures depend on the extent of canal compromise? Spinal Cord 40:295–299CrossRefPubMedGoogle Scholar
  41. 41.
    Wessberg P, Wang Y, Irstam L, Nordwall A (2001) The effect of surgery and remodelling on spinal canal measurements after thoracolumbar burst fractures. Eur Spine J 10:55–63CrossRefPubMedGoogle Scholar
  42. 42.
    Braakman R, Fontijne WPJ, Zeegers R, Steenbeek JR, Tanghe HLJ (1991) Neurological deficit in injuries of the thoracic and lumbar spine. Acta Neurochir (Wien) 111(1):1–17CrossRefGoogle Scholar
  43. 43.
    Bohlman HH, Kirkpatrick JS, Delamarter RB, Leventhal M (1994) Anterior decompression for late pain and paralysis after fractures of the thoracolumbar spine. Clin Orthop 300:24–29Google Scholar
  44. 44.
    Dai LY (2001) Remodeling of the spinal canal after thoracolumbar burst fractures. Clin Orthop 382:119–123CrossRefPubMedGoogle Scholar
  45. 45.
    McNamara MJ, Stephens GC, Spengler DM (1992) Transpedicular short-segment fusions for treatment of lumbar burst fractures. J Spinal Disord 5:183–187CrossRefPubMedGoogle Scholar
  46. 46.
    Scapinelli R, Candiotto S (1995) Spontaneous remodelling of the spinal canal after burst fractures of the low thoracic and lumbar region. J Spinal Disord 8:486–493CrossRefPubMedGoogle Scholar
  47. 47.
    Wilcox RK, Boerger TO, Allen DJ, Barton DC et al (2003) A dynamic study of thoracolumbar burst fractures. J Bone Joint Surg 85-A(11):2184-2189Google Scholar
  48. 48.
    Resch H, Rabl M, Klampfer H, Ritter E, Povacz P (2000) Surgical versus conservative treatment of fractures of the thoracolumbar transition. Unfallchirurg 103(4):281–288CrossRefPubMedGoogle Scholar
  49. 49.
    Kramer DL, Rodgers WB, Mansfield FL (1995) Transpedicular instrumentation and short-segment fusion of thoracolumbar fractures: a prospective study using a single instrumentation system. J Orthop Trauma 9:499–506CrossRefPubMedGoogle Scholar
  50. 50.
    Oda I, Cunningham BW, Buckley RA, Goebel MJ et al (1999) Does spinal kyphotic deformity influence the biomechanicalcharacteristics of the adjacent motion segments? An in vivo animal model. Spine 24:2139–2146CrossRefPubMedGoogle Scholar
  51. 51.
    Jacobs RMD, Asher M, Snider R (1980) Thoracolumbar spinal injuries. A comparative study of recumbent and operative treatment 100 patients. Spine 5:463–477CrossRefPubMedGoogle Scholar
  52. 52.
    Bedbrook GM (1975) Treatment of thoracolumbar dislocation and fractures with paraplegia. Clin Orthop Relat Res 112:27–43Google Scholar
  53. 53.
    Patwardhan AG, Li SP, Gavin T, Lorenz M, Meade KP, Zindrick M (1990) Orthotic stabilization of thoracolumbar injuries. A biomechanical analysis of the Jewett hyperextension orthosis. Spine 15:654–661CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Orthopaedics and Spine SurgeryGanga HospitalCoimbatoreIndia

Personalised recommendations