European Spine Journal

, 18:1595 | Cite as

Effects of compressive loading on biomechanical properties of disc and peripheral tissue in a rat tail model

  • Tomokazu Nakamura
  • Takaro Iribe
  • Yoshinori Asou
  • Hiroo Miyairi
  • Kozo Ikegami
  • Kazuo Takakuda
Original Article


Intervertebral disc degeneration induced by mechanical compression is an important issue in spinal disorder research. In this study, the biomechanical aspect of the rat tail model was investigated. An external loading device equipped with super-elastic TiNi springs was developed to apply a precise load to the rat tail. By using this device, rat tail discs were subjected to compressive stress of 0.5 or 1.0 MPa for 2 weeks. Discs in the sham group received an attachment of the device but no loading. After the experimental period, first the intact tail with peripheral tissues (PT) such as tendon and skin and then the retrieved disc without PT were subjected to a uniaxial tension–compression test; biomechanical characteristics such as range of motion (ROM), neutral zone (NZ), and hysteresis loss (HL) were evaluated. Furthermore, the load-bearing contribution of PT in the intact tail was estimated by comparing the load–displacement curves obtained by the mechanical tests performed with and without PT. The experimental findings revealed that the continuous compressive stress induced reduction in disc thickness. The intact tail demonstrated decreases in ROM and NZ as well as increases in HL. On the other hand, the retrieved disc demonstrated increases in ROM, NZ, and HL. Further, a significant increase in the load-bearing contribution of PT was indicated. These findings suggest that the load-bearing capacity of the disc was seriously deteriorated by the application of compressive stress of 0.5 or 1.0 MPa for 2 weeks.


Intervertebral disc Compression load Biomechanical properties Load-bearing capabilities Rat tail model 



This study was partially supported by a Grant-in-Aid for Scientific Research (B) No. 17300145 and (B) No. 20300153 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.


  1. 1.
    Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P (2000) Mechanical initiation of intervertebral disc degeneration. Spine 25(13):1625–1636. doi: 10.1097/00007632-200007010-00005 CrossRefPubMedGoogle Scholar
  2. 2.
    Adams MA, McMillan DW, Green TP, Dolan P (1996) Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine 21(4):434–438. doi: 10.1097/00007632-199602150-00006 CrossRefPubMedGoogle Scholar
  3. 3.
    Akeson WH (1961) An experimental study of joint stiffness. J Bone Joint Surg Am 43:1022–1034PubMedGoogle Scholar
  4. 4.
    Baranto A, Ekström L, Holm S, Hellström M, Hansson HA, Swärd L (2005) Vertebral fractures and separations of endplates after traumatic loading of adolescent porcine spines with experimentally-induced disc degeneration. Clin Biomech (Bristol, Avon) 20(10):1046–1054. doi: 10.1016/j.clinbiomech.2005.06.014 CrossRefGoogle Scholar
  5. 5.
    Bogduk N (2005) Clinical anatomy of the lumbar spine and sacrum. Churchill Livingstone, PhiladelphiaGoogle Scholar
  6. 6.
    Ching CT, Chow DH, Yao FY, Holmes AD (2003) The effect of cyclic compression on the mechanical properties of the inter-vertebral disc: an in vivo study in a rat tail model. Clin Biomech (Bristol, Avon) 18(3):182–189. doi: 10.1016/S0268-0033(02)00188-2 CrossRefGoogle Scholar
  7. 7.
    Court C, Chin JR, Liebenberg E, Colliou OK, Lotz JC (2007) Biological and mechanical consequences of transient intervertebral disc bending. Eur Spine J 16(11):1899–1906. doi: 10.1007/s00586-007-0476-x CrossRefPubMedGoogle Scholar
  8. 8.
    Court C, Colliou OK, Chin JR, Liebenberg E, Bradford DS, Lotz JC (2001) The effect of static in vivo bending on the murine intervertebral disc. Spine J 1(4):239–245. doi: 10.1016/S1529-9430(01)00056-0 CrossRefPubMedGoogle Scholar
  9. 9.
    Elfering A, Semmer N, Birkhofer D, Zanetti M, Hodler J, Boos N (2002) Risk factors for lumbar disc degeneration: a 5-year prospective MRI study in asymptomatic individuals. Spine 27(2):125–134. doi: 10.1097/00007632-200201150-00002 CrossRefPubMedGoogle Scholar
  10. 10.
    Frymoyer JW, Pope MH, Clements JH, Wilder DG, MacPherson B, Ashikaga T (1983) Risk factors in low-back pain. An epidemiological survey. J Bone Joint Surg Am 65(2):213–218PubMedGoogle Scholar
  11. 11.
    Handa T, Ishihara H, Ohshima H, Osada R, Tsuji H, Obata K (1997) Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine 22(10):1085–1091. doi: 10.1097/00007632-199705150-00006 CrossRefPubMedGoogle Scholar
  12. 12.
    Hutton WC, Elmer WA, Boden SD, Hyon S, Toribatake Y, Tomita K, Hair GA (1999) The effect of hydrostatic pressure on intervertebral disc metabolism. Spine 24(15):1507–1515. doi: 10.1097/00007632-199908010-00002 CrossRefPubMedGoogle Scholar
  13. 13.
    Hutton WC, Elmer WA, Bryce LM, Kozlowska EE, Boden SD, Kozlowski M (2001) Do the intervertebral disc cells respond to different levels of hydrostatic pressure? Clin Biomech (Bristol, Avon) 16(9):728–734. doi: 10.1016/S0268-0033(01)00080-8 CrossRefGoogle Scholar
  14. 14.
    Hutton WC, Ganey TM, Elmer WA, Kozlowska E, Ugbo JL, Doh ES, Whitesides TE Jr (2000) Does long-term compressive loading on the intervertebral disc cause degeneration? Spine 25(23):2993–3004. doi: 10.1097/00007632-200012010-00006 CrossRefPubMedGoogle Scholar
  15. 15.
    Hutton WC, Yoon ST, Elmer WA, Li J, Murakami H, Minamide A, Akamaru T (2002) Effect of tail suspension (or simulated weightlessness) on the lumbar intervertebral disc: study of proteoglycans and collagen. Spine 27(12):1286–1290. doi: 10.1097/00007632-200206150-00008 CrossRefPubMedGoogle Scholar
  16. 16.
    Iatridis JC, Mente PL, Stokes IA, Aronsson DD, Alini M (1999) Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 24(10):996–1002. doi: 10.1097/00007632-199905150-00013 CrossRefPubMedGoogle Scholar
  17. 17.
    Korecki CL, Costi JJ, Iatridis JC (2008) Needle puncture injury affects intervertebral disc mechanics and biology in an organ culture model. Spine 33(3):235–241. doi: 10.1097/BRS.0b013e3181624504 CrossRefPubMedGoogle Scholar
  18. 18.
    Korecki CL, MacLean JJ, Iatridis JC (2007) Characterization of an in vitro intervertebral disc organ culture system. Eur Spine J 16(7):1029–1037. doi: 10.1007/s00586-007-0327-9 CrossRefPubMedGoogle Scholar
  19. 19.
    Kuroki H, Goel VK, Holekamp SA, Ebraheim NA, Kubo S, Tajima N (2004) Contributions of flexion-extension cyclic loads to the lumbar spinal segment stability following different discectomy procedures. Spine 29(3):E39–E46. doi: 10.1097/01.BRS.0000106683.84600.E5 CrossRefPubMedGoogle Scholar
  20. 20.
    Lai A, Chow DH, Siu WS, Holmes AD, Tang FH (2006) Reliability of radiographic intervertebral disc height measurement for in vivo rat-tail model. Med Eng Phys 29(7):814–819. doi: 10.1016/j.medengphy.2006.08.013 CrossRefPubMedGoogle Scholar
  21. 21.
    Lai A, Chow DH, Siu SW, Leung SS, Lau EFL, Tang FH, Pope MH (2008) Effects of static compression with different loading magnitudes and durations on the intervertebral disc. An in vivo rat-tail study. Spine 33(25):2721–2727. doi: 10.1097/BRS.0b013e318180e688 CrossRefPubMedGoogle Scholar
  22. 22.
    Lindblom K (1952) Experimental ruptures of intervertebral discs in rats’ tails; a preliminary report. J Bone Joint Surg Am 34(1):123–128PubMedGoogle Scholar
  23. 23.
    Lindblom K (1957) Intervertebral-disc degeneration considered as a pressure atrophy. J Bone Joint Surg Am 39(4):933–945PubMedGoogle Scholar
  24. 24.
    Lotz JC (2004) Animal models of intervertebral disc degeneration: lessons learned. Spine 29(23):2742–2750. doi: 10.1097/01.brs.0000146498.04628.f9 CrossRefPubMedGoogle Scholar
  25. 25.
    Lotz JC, Chin JR (2000) Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine 25(12):1477–1483. doi: 10.1097/00007632-200006150-00005 CrossRefPubMedGoogle Scholar
  26. 26.
    Lotz JC, Colliou OK, Chin JR, Duncan NA, Liebenberg E (1998) Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine 23(23):2493–2506. doi: 10.1097/00007632-199812010-00004 CrossRefPubMedGoogle Scholar
  27. 27.
    Lotz JC, Hadi T, Bratton C, Reiser KM, Hsieh AH (2008) Anulus fibrosus tension inhibits degenerative structural changes in lamellar collagen. Eur Spine J 17(9):1149–1159. doi: 10.1007/s00586-008-0721-y CrossRefPubMedGoogle Scholar
  28. 28.
    Lundin O, Ekström L, Hellström M, Holm S, Swärd L (2000) Exposure of the porcine spine to mechanical compression: differences in injury pattern between adolescents and adults. Eur Spine J 9(6):466–471. doi: 10.1007/s005860000164 CrossRefPubMedGoogle Scholar
  29. 29.
    Luoma K, Riihimäki H, Luukkonen R, Raininko R, Viikari-Juntura E, Lamminen A (2000) Low back pain in relation to lumbar disc degeneration. Spine 25(4):487–492. doi: 10.1097/00007632-200002150-00016 CrossRefPubMedGoogle Scholar
  30. 30.
    McGill SM (1997) The biomechanics of low back injury: implications on current practice in industry and the clinic. J Biomech 30(5):465–475. doi: 10.1016/S0021-9290(96)00172-8 CrossRefPubMedGoogle Scholar
  31. 31.
    Moore RJ (2000) The vertebral end-plate: what do we know? Eur Spine J 9(2):92–96. doi: 10.1007/s005860050217 CrossRefPubMedGoogle Scholar
  32. 32.
    Nachemson A, Morris JM (1964) In vivo measurements of intradiscal pressure. Discometry, a method for the determination of pressure in the lower lumbar discs. J Bone Joint Surg Am 46:1077–1092PubMedGoogle Scholar
  33. 33.
    Niosi CA, Oxland TR (2004) Degenerative mechanics of the lumbar spine. Spine J 4:202S–208S. doi: 10.1016/j.spinee.2004.07.013 CrossRefPubMedGoogle Scholar
  34. 34.
    Panjabi M, White A (2001) Biomechanics in the musculoskeletal system. Churchill Livingstone, PhiladelphiaGoogle Scholar
  35. 35.
    Panjabi M (2003) Clinical spinal instability and low back pain. J Electromyogr Kinesiol 13(4):371–379. doi: 10.1016/S1050-6411(03)00044-0 CrossRefPubMedGoogle Scholar
  36. 36.
    Peacock EE Jr (1966) Some biochemical and biophysical aspects of joint stiffness: role of collagen synthesis as opposed to altered molecular bonding. Ann Surg 164(1):1–12. doi: 10.1097/00000658-196601000-00001 CrossRefPubMedGoogle Scholar
  37. 37.
    Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 24(23):2468–2474CrossRefPubMedGoogle Scholar
  38. 38.
    Simunic DI, Broom ND, Robertson PA (2001) Biomechanical factors influencing nuclear disruption of the intervertebral disc. Spine 26(11):1223–1230CrossRefPubMedGoogle Scholar
  39. 39.
    Thompson RE, Pearcy MJ, Barker TM (2004) The mechanical effects of intervertebral disc lesions. Clin Biomech (Bristol, Avon) 19(5):448–455. doi: 10.1016/j.clinbiomech.2004.01.012 CrossRefGoogle Scholar
  40. 40.
    Trudel G, Uhthoff HK, Brown M (1999) Extent and direction of joint motion limitation after prolonged immobility: an experimental study in the rat. Arch Phys Med Rehabil 80(12):1542–1547CrossRefPubMedGoogle Scholar
  41. 41.
    Wang DL, Jiang SD, Dai LY (2007) Biologic response of the intervertebral disc to static and dynamic compression in vitro. Spine 32(23):2521–2528. doi: 10.1097/BRS.0b013e318158cb61 CrossRefPubMedGoogle Scholar
  42. 42.
    Waris E, Eskelin M, Hermunen H, Kiviluoto O, Paajanen H (2007) Disc degeneration in low back pain: a 17-year follow-up study using magnetic resonance imaging. Spine 32(6):682–684. doi: 10.1097/01.brs.0000257523.38337.96 CrossRefGoogle Scholar
  43. 43.
    Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24(8):755–762CrossRefPubMedGoogle Scholar
  44. 44.
    Wilke HJ, Neef P, Hinz B, Seidel H, Claes L (2001) Intradiscal pressure together with anthropometric data–a data set for the validation of models. Clin Biomech (Bristol, Avon) 16(Suppl 1):S111–S126. doi: 10.1016/S0268-0033(00)00103-0 CrossRefGoogle Scholar
  45. 45.
    Zhao F, Pollintine P, Hole BD, Dolan P, Adams MA (2005) Discogenic origins of spinal instability. Spine 30(23):2621–2630CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Tomokazu Nakamura
    • 1
  • Takaro Iribe
    • 2
  • Yoshinori Asou
    • 3
  • Hiroo Miyairi
    • 1
  • Kozo Ikegami
    • 1
  • Kazuo Takakuda
    • 2
  1. 1.Department of Mechanical System Engineering, Graduate School of Advanced Science and TechnologyTokyo Denki UniversityChiyoda-kuJapan
  2. 2.Institute of Biomaterials and BioengineeringTokyo Medical and Dental UniversityChiyoda-kuJapan
  3. 3.Section of Orthopedic Surgery, Graduate SchoolTokyo Medical and Dental UniversityBunkyo-kuJapan

Personalised recommendations