Advertisement

European Spine Journal

, Volume 18, Issue 11, pp 1610–1620 | Cite as

Posterolateral spinal fusion in a rabbit model using a collagen–mineral composite bone graft substitute

  • William Robert WalshEmail author
  • F. Vizesi
  • G. B. Cornwall
  • D. Bell
  • R. Oliver
  • Y. Yu
Original Article

Abstract

Choosing the appropriate graft material to participate in the healing process in posterolateral spinal fusion continues to be a challenge. Combining synthetic graft materials with bone marrow aspirate (BMA) and autograft is a reasonable treatment option for surgeons to potentially reduce or replace the need for autograft. FormaGraft, a bone graft material comprising 12% bovine-derived collagen and 88% ceramic in the form of hydroxyapatite (HAp) and beta tricalcium phosphate (β-TCP) was evaluated in three possible treatment modalities for posterior spinal fusion in a standard rabbit model. These three treatment groups were FormaGraft alone, FormaGraft soaked in autogenous BMA, and FormaGraft with BMA and iliac crest autograft. No statistically demonstrable benefits or adverse effects of the addition of BMA were found in the current study based on macroscopic, radiology or mechanical data. This may reflect, in part, the good to excellent results of the collagen HA/TCP composite material alone in a well healing bony bed. Histology did, however, reveal a benefit with the use of BMA. Combining FormaGraft with autograft and BMA achieved results equivalent to autograft alone. The mineral and organic nature of the material provided a material that facilitated fusion between the transverse processes in a standard preclinical posterolateral fusion model.

Keywords

Spinal fusion Bone graft Collagen Hydroxyapatite Bone marrow aspirate 

Notes

Acknowledgments

Support for this study was provided by NuVasive, Inc. San Diego, CA. The authors would like to acknowledge the support of John Rawlinson, Greg Mitchell and Molly Barnhart for the animal-related aspects of this study.

References

  1. 1.
    Becker S, Maissen O, Ponomarev I, Igor P, Stoll T, Thierry S, Rahn B, Wilke I, Ingo W (2006) Osteopromotion by a beta-tricalcium phosphate/bone marrow hybrid implant for use in spine surgery. Spine 31:11–17. doi: 10.1097/01.brs.0000192762.40274.57 CrossRefPubMedGoogle Scholar
  2. 2.
    Boden SD, Martin GJ, Morone M, Ugbo JL, Titus L, Hutton WC (1999) The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spine fusion. Spine 24:320–327. doi: 10.1097/00007632-199902150-00003 CrossRefPubMedGoogle Scholar
  3. 3.
    Boden SD, Martin GJ, Morone MA, Ugbo JL, Moskovitz PA (1999) Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate. Spine 24:1179–1185. doi: 10.1097/00007632-199906150-00002 CrossRefPubMedGoogle Scholar
  4. 4.
    Bozic KJ, Glazer PA, Zurakowski D, Simon BJ, Lipson SJ, Hayes WC (1999) In vivo evaluation of coralline hydroxyapatite and direct current electrical stimulation in lumbar spinal fusion. Spine 24:2127–2133. doi: 10.1097/00007632-199910150-00012 CrossRefPubMedGoogle Scholar
  5. 5.
    Cinotti G, Patti AM, Vulcano A, Della Rocca C, Polveroni G, Giannicola G, Postacchini F (2004) Experimental posterolateral spinal fusion with porous ceramics and mesenchymal stem cells. J Bone Joint Surg Br 86:135–142PubMedGoogle Scholar
  6. 6.
    Goshima J, Goldberg VM, Caplan AI (1991) The origin of bone formed in composite grafts of porous calcium phosphate ceramic loaded with marrow cells. Clin Orthop Relat Res 27:4–283Google Scholar
  7. 7.
    Johnson KD, Frierson KE, Keller TS, Cook C, Scheinberg R, Zerwekh J, Meyers L, Sciadini MF (1996) Porous ceramics as bone graft substitutes in long bone defects: a biomechanical, histological, and radiographic analysis. J Orthop Res 14:351–369. doi: 10.1002/jor.1100140304 CrossRefPubMedGoogle Scholar
  8. 8.
    Karaismailoglu TN, Tomak Y, Andac A, Ergun E (2002) Comparison of autograft, coralline graft, and xenograft in promoting posterior spinal fusion. Acta Orthop Traumatol Turc 36:147–154PubMedGoogle Scholar
  9. 9.
    Khoueir P, Oh BC, Di Risio DJ, Wang MY (2007) Multilevel anterior cervical fusion using a collagen-hydroxyapatite matrix with iliac crest bone marrow aspirate: an 18-month follow-up study. Neurosurgery 61:963–970. doi: 10.1227/01.neu.0000303192.64802.c6 (discussion 970–971)CrossRefPubMedGoogle Scholar
  10. 10.
    Konishi S, Nakamura H, Seki M, Nagayama R, Yamano Y (2002) Hydroxyapatite granule graft combined with recombinant human bone morphogenic protein-2 for solid lumbar fusion. J Spinal Disord Tech 15:237–244PubMedGoogle Scholar
  11. 11.
    Kraiwattanapong C, Boden SD, Louis-Ugbo J, Attallah E, Barnes B, Hutton WC (2005) Comparison of Healos/bone marrow to INFUSE(rhBMP-2/ACS) with a collagen–ceramic sponge bulking agent as graft substitutes for lumbar spine fusion. Spine 30:1001–1007. doi: 10.1097/01.brs.0000160997.91502.3b (discussion 1007)CrossRefPubMedGoogle Scholar
  12. 12.
    Minamide A, Kawakami M, Hashizume H, Sakata R, Tamaki T (2001) Evaluation of carriers of bone morphogenetic protein for spinal fusion. Spine 26:933–939. doi: 10.1097/00007632-200104150-00017 CrossRefPubMedGoogle Scholar
  13. 13.
    Minamide A, Kawakami M, Hashizume H, Sakata R, Yoshida M, Tamaki T (2004) Experimental study of carriers of bone morphogenetic protein used for spinal fusion. J Orthop Sci 9:142–151. doi: 10.1007/s00776-003-0749-0 CrossRefPubMedGoogle Scholar
  14. 14.
    Muschler GF, Matsukura Y, Nitto H, Boehm CA, Valdevit AD, Kambic HE, Davros WJ, Easley KA, Powell KA (2005) Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res 242–251. doi: 10.1097/01.blo.0000149812.32857.8b
  15. 15.
    Muschler GF, Nitto H, Matsukura Y, Boehm C, Valdevit A, Kambic H, Davros W, Powell K, Easley K (2003) Spine fusion using cell matrix composites enriched in bone marrow-derived cells. Clin Orthop Relat Res 102–118. doi: 10.1097/00003086-200302000-00018
  16. 16.
    Namikawa T, Terai H, Suzuki E, Hoshino M, Toyoda H, Nakamura H, Miyamoto S, Takahashi N, Ninomiya T, Takaoka K (2005) Experimental spinal fusion with recombinant human bone morphogenetic protein-2 delivered by a synthetic polymer and beta-tricalcium phosphate in a rabbit model. Spine 30:1717–1722. doi: 10.1097/01.brs.0000172155.17239.fa CrossRefPubMedGoogle Scholar
  17. 17.
    Nishikawa M, Myoui A, Ohgushi H, Ikeuchi M, Tamai N, Yoshikawa H (2004) Bone tissue engineering using novel interconnected porous hydroxyapatite ceramics combined with marrow mesenchymal cells: quantitative and three-dimensional image analysis. Cell Transpl 13:367–376. doi: 10.3727/000000004783983819 CrossRefGoogle Scholar
  18. 18.
    Ohgushi H, Goldberg VM, Caplan AI (1989) Heterotopic osteogenesis in porous ceramics induced by marrow cells. J Orthop Res 7:568–578. doi: 10.1002/jor.1100070415 CrossRefPubMedGoogle Scholar
  19. 19.
    Ohgushi H, Goldberg VM, Caplan AI (1989) Repair of bone defects with marrow cells and porous ceramic. Experiments in rats. Acta Orthop Scand 60:334–339PubMedCrossRefGoogle Scholar
  20. 20.
    Tay BK, Le AX, Heilman M, Lotz J, Bradford DS (1998) Use of a collagen–hydroxyapatite matrix in spinal fusion. A rabbit model. Spine 23:2276–2281. doi: 10.1097/00007632-199811010-00005 CrossRefPubMedGoogle Scholar
  21. 21.
    Walsh WR, Harrison J, Loefler A, Martin T, Van Sickle D, Brown MK, Sonnabend DH (2000) Mechanical and histologic evaluation of Collagraft in an ovine lumbar fusion model. Clin Orthop Relat Res 258–266. doi: 10.1097/00003086-200006000-00031
  22. 22.
    Zerwekh JE, Kourosh S, Scheinberg R, Kitano T, Edwards ML, Shin D, Selby DK (1992) Fibrillar collagen–biphasic calcium phosphate composite as a bone graft substitute for spinal fusion. J Orthop Res 10:562–572. doi: 10.1002/jor.1100100411 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • William Robert Walsh
    • 1
    Email author
  • F. Vizesi
    • 1
    • 2
  • G. B. Cornwall
    • 2
  • D. Bell
    • 1
  • R. Oliver
    • 1
  • Y. Yu
    • 1
  1. 1.Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales HospitalUniversity of New South WalesSydneyAustralia
  2. 2.NuVasive, Inc.San DiegoUSA

Personalised recommendations