European Spine Journal

, Volume 18, Issue 11, pp 1604–1609 | Cite as

Microdialysis of paraspinal muscle in healthy volunteers and patients underwent posterior lumbar fusion surgery

  • Gang Ren
  • Søren Eiskjær
  • Jon Kaspersen
  • Finn Bjarke Christensen
  • Sten Rasmussen
Original Article


Paraspinal muscle damage is inevitable during conventional posterior lumbar fusion surgery. Minimal invasive surgery is postulated to result in less muscle damage and better outcome. The aim of this study was to monitor metabolic changes of the paraspinal muscle and to evaluate paraspinal muscle damage during surgery using microdialysis (MD). The basic interstitial metabolisms of the paraspinal muscle and the deltoid muscle were monitored using the MD technique in eight patients, who underwent posterior lumbar fusion surgery (six male and two female, median age 57.7 years, range 37–74) and eight healthy individuals for different positions (five male and three female, age 24.1 ± 0.8 years). Concentrations of glucose, glycerol, and lactate pyruvate ratio (L/P) in both tissues were compared. In the healthy group, the glucose and glycerol concentrations and L/P were unchanged in the paraspinal muscle when the body position changed from prone to supine. The glucose concentration and L/P were stable in the paraspinal muscle during the surgery. Glycerol concentrations increased significantly to 243.0 ± 144.1 μM in the paraspinal muscle and 118.9 ± 79.8 μM in the deltoid muscle in the surgery group. Mean glycerol concentration difference (GCD) between the paraspinal muscle and the deltoid tissue was 124.1 μM (P = 0.003, with 95% confidence interval 83.4–164.9 μM). The key metabolism of paraspinal muscle can be monitored by MD during the conventional posterior lumbar fusion surgery. The glycerol concentration in the paraspinal muscle is markedly increased compared with the deltoid muscle during the surgery. It is proposed that GCD can be used to evaluate surgery related paraspinal muscle damage. Changing body position did not affect the paraspinal muscle metabolism in the healthy subjects.


Glucose Lactate pyruvate ratio Glycerol Paraspinal muscle Microdialysis 


  1. 1.
    Gejo R, Kawaguchi Y, Kondoh T et al (2000) Magnetic resonance imaging and histologic evidence of postoperative back muscle injury in rats. Spine 25(8):941–946. doi: 10.1097/00007632-200004150-00008 CrossRefPubMedGoogle Scholar
  2. 2.
    Gejo R, Matsui H, Kawaguchi Y, Ishihara H, Tsuji H (1999) Serial changes in trunk muscle performance after posterior lumbar surgery. Spine 24(10):1023–1028. doi: 10.1097/00007632-199905150-00017 CrossRefPubMedGoogle Scholar
  3. 3.
    Hagstrom-Toft E, Arner P, Wahrenberg H et al (1993) Adrenergic regulation of human adipose tissue metabolism in situ during mental stress. J Clin Endocrinol Metab 76(2):392–398. doi: 10.1210/jc.76.2.392 CrossRefPubMedGoogle Scholar
  4. 4.
    Hillered L, Persson L (1999) Neurochemical monitoring of the acutely injured human brain. Scand J Clin Lab Invest Suppl 229:9–18PubMedCrossRefGoogle Scholar
  5. 5.
    Hillered L, Valtysson J, Enblad P, Persson L (1998) Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry 64(4):486–491. doi: 10.1136/jnnp.64.4.486 CrossRefPubMedGoogle Scholar
  6. 6.
    Kawaguchi Y, Matsui H, Tsuji H (1994) Back muscle injury after posterior lumbar spine surgery. Part 2: Histologic and histochemical analyses in humans. Spine 19(22):2598–2602PubMedCrossRefGoogle Scholar
  7. 7.
    Kawaguchi Y, Matsui H, Tsuji H (1996) Back muscle injury after posterior lumbar spine surgery. A histologic and enzymatic analysis. Spine 21(8):941–944. doi: 10.1097/00007632-199604150-00007 CrossRefPubMedGoogle Scholar
  8. 8.
    Kawaguchi Y, Matsui H, Tsuji H (1997) Changes in serum creatine phosphokinase MM isoenzyme after lumbar spine surgery. Spine 22(9):1018–1023. doi: 10.1097/00007632-199705010-00015 CrossRefPubMedGoogle Scholar
  9. 9.
    Kawaguchi Y, Yabuki S, Styf J et al (1996) Back muscle injury after posterior lumbar spine surgery. Topographic evaluation of intramuscular pressure and blood flow in the porcine back muscle during surgery. Spine 21(22):2683–2688. doi: 10.1097/00007632-199611150-00019 CrossRefPubMedGoogle Scholar
  10. 10.
    Kim DY, Lee SH, Chung SK, Lee HY (2005) Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine 30(1):123–129. doi: 10.1097/01.brs.0000157172.00635.3a CrossRefPubMedGoogle Scholar
  11. 11.
    Kim KT, Lee SH, Suk KS, Bae SC (2006) The quantitative analysis of tissue injury markers after mini-open lumbar fusion. Spine 31(6):712–716. doi: 10.1097/01.brs.0000202533.05906.ea CrossRefPubMedGoogle Scholar
  12. 12.
    Korth U, Merkel G, Fernandez FF et al (2000) Tourniquet-induced changes of energy metabolism in human skeletal muscle monitored by microdialysis. Anesthesiology 93(6):1407–1412. doi: 10.1097/00000542-200012000-00011 CrossRefPubMedGoogle Scholar
  13. 13.
    Lenke LG, Bridwell KH, Jaffe AS (1994) Increase in creatine kinase MB isoenzyme levels after spinal surgery. J Spinal Disord 7(1):70–76CrossRefPubMedGoogle Scholar
  14. 14.
    Mand’ak J, Zivny P, Lonsky V et al (2004) Changes in metabolism and blood flow in peripheral tissue (skeletal muscle) during cardiac surgery with cardiopulmonary bypass: the biochemical microdialysis study. Perfusion 19(1):53–63. doi: 10.1191/0267659104pf704oa CrossRefPubMedGoogle Scholar
  15. 15.
    Mayer TG, Vanharanta H, Gatchel RJ et al (1989) Comparison of CT scan muscle measurements and isokinetic trunk strength in postoperative patients. Spine 14(1):33–36. doi: 10.1097/00007632-198901000-00006 CrossRefPubMedGoogle Scholar
  16. 16.
    Ostman B, Michaelsson K, Rahme H, Hillered L (2004) Tourniquet-induced ischemia and reperfusion in human skeletal muscle. Clin Orthop Relat Res 418:260–265CrossRefPubMedGoogle Scholar
  17. 17.
    Rosdahl H, Hamrin K, Ungerstedt U, Henriksson J (1998) Metabolite levels in human skeletal muscle and adipose tissue studied with microdialysis at low perfusion flow. Am J Physiol 274(5 Pt 1):E936–E945PubMedGoogle Scholar
  18. 18.
    Rosdahl H, Ungerstedt U, Jorfeldt L, Henriksson J (1993) Interstitial glucose and lactate balance in human skeletal muscle and adipose tissue studied by microdialysis. J Physiol 471:637–657PubMedGoogle Scholar
  19. 19.
    Sihvonen T, Herno A, Paljarvi L et al (1993) Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine 18(5):575–581. doi: 10.1097/00007632-199304000-00009 CrossRefPubMedGoogle Scholar
  20. 20.
    Stallknecht B, Kiens B, Helge JW, Richter EA, Galbo H (2004) Interstitial glycerol concentrations in human skeletal muscle and adipose tissue during graded exercise. Acta Physiol Scand 180(4):367–377. doi: 10.1111/j.1365-201X.2004.01264.x CrossRefPubMedGoogle Scholar
  21. 21.
    Stevens KJ, Spenciner DB, Griffiths KL et al (2006) Comparison of minimally invasive and conventional open posterolateral lumbar fusion using magnetic resonance imaging and retraction pressure studies. J Spinal Disord Tech 19(2):77–86. doi: 10.1097/01.bsd.0000193820.42522.d9 CrossRefPubMedGoogle Scholar
  22. 22.
    Ungerstedt U, Pycock C (1974) Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 30(1–3):44–55PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gang Ren
    • 1
  • Søren Eiskjær
    • 1
  • Jon Kaspersen
    • 1
  • Finn Bjarke Christensen
    • 1
  • Sten Rasmussen
    • 1
  1. 1.Aarhus University Aalborg HospitalAalborgDenmark

Personalised recommendations