Advertisement

European Spine Journal

, Volume 18, Issue 7, pp 1013–1021 | Cite as

Segmental in vivo vertebral motion during functional human lumbar spine activities

  • Guoan Li
  • Shaobai Wang
  • Peter Passias
  • Qun Xia
  • Gang Li
  • Kirkham Wood
Original Article

Abstract

Quantitative data on the range of in vivo vertebral motion is critical to enhance our understanding of spinal pathology and to improve the current surgical treatment methods for spinal diseases. Little data have been reported on the range of lumbar vertebral motion during functional body activities. In this study, we measured in vivo 6 degrees-of-freedom (DOF) vertebral motion during unrestricted weightbearing functional body activities using a combined MR and dual fluoroscopic imaging technique. Eight asymptomatic living subjects were recruited and underwent MRI scans in order to create 3D vertebral models from L2 to L5 for each subject. The lumbar spine was then imaged using two fluoroscopes while the subject performed primary flexion-extension, left-right bending, and left-right twisting. The range of vertebral motion during each activity was determined through a previously described imaging-model matching technique at L2-3, L3-4, and L4-5 levels. Our data revealed that the upper vertebrae had a higher range of flexion than the lower vertebrae during flexion-extension of the body (L2-3, 5.4 ± 3.8°; L3-4, 4.3 ± 3.4°; L4-5, 1.9 ± 1.1°, respectively). During bending activity, the L4-5 had a higher (but not significant) range of left-right bending motion (4.7 ± 2.4°) than both L2-3 (2.9 ± 2.4°) and L3-4 (3.4 ± 2.1°), while no statistical difference was observed in left-right twisting among the three vertebral levels (L2-3, 2.5 ± 2.3°; L3-4, 2.4 ± 2.6°; and L4-5, 2.9 ± 2.1°, respectively). Besides the primary rotations reported, coupled motions were quantified in all DOFs. The coupled translation in left-right and anterior-posterior directions, on average, reached greater than 1 mm, while in the proximal-distal direction this was less than 1 mm. Overall, each vertebral level responds differently to flexion-extension and left-right bending, but similarly to the left-right twisting. This data may provide new insight into the in vivo function of human spines and can be used as baseline data for investigation of pathological spine kinematics.

Keywords

In vivo spine motion Vertebral kinematics Spine biomechanics Lumbar spine Dual fluoroscopes 

Notes

Acknowledgments

The financial support from a NASS research grant and Department of Orthopaedic Surgery of Massachusetts General Hospital was greatly appreciated. This research was also supported by the Orthopaedic Department at Tianjin Orthopaedic Hospital. We also thank Drs. Brian Grottkau and Michael Kozanek for technical assistance.

References

  1. 1.
    Auerbach JD, Wills BP, McIntosh TC, Balderston RA (2007) Evaluation of spinal kinematics following lumbar total disc replacement and circumferential fusion using in vivo fluoroscopy. Spine 32:527–536. doi: 10.1097/01.brs.0000256915.90236.17 PubMedCrossRefGoogle Scholar
  2. 2.
    Bingham J, Li G (2006) An optimized image matching method for determining in vivo TKA kinematics with a dual-orthogonal fluoroscopic imaging system. J Biomech Eng 128:588–595. doi: 10.1115/1.2205865 PubMedCrossRefGoogle Scholar
  3. 3.
    Blankenbaker DG, Haughton VM, Rogers BP, Meyerand ME, Fine JP (2006) Axial rotation of the lumbar spinal motion segments correlated with concordant pain on discography: a preliminary study. AJR Am J Roentgenol 186:795–799. doi: 10.2214/AJR.04.1629 PubMedCrossRefGoogle Scholar
  4. 4.
    Burnett AF, Cornelius MW, Dankaerts W, O’Sullivan PB (2004) Spinal kinematics and trunk muscle activity in cyclists: a comparison between healthy controls and non-specific chronic low back pain subjects-a pilot investigation. Man Ther 9:211–219. doi: 10.1016/j.math.2004.06.002 PubMedCrossRefGoogle Scholar
  5. 5.
    Fazey PJ, Song S, Monsas S, Johansson L, Haukalid T, Price RI, Singer KP (2006) An MRI investigation of intervertebral disc deformation in response to torsion. Clin Biomech (Bristol, Avon) 21:538–542. doi: 10.1016/j.clinbiomech.2005.12.008 CrossRefGoogle Scholar
  6. 6.
    Fujii R, Sakaura H, Mukai Y, Hosono N, Ishii T, Iwasaki M, Yoshikawa H, Sugamoto K (2007) Kinematics of the lumbar spine in trunk rotation: in vivo three-dimensional analysis using magnetic resonance imaging. Eur Spine J 16:1867–1874. doi: 10.1007/s00586-007-0373-3 PubMedCrossRefGoogle Scholar
  7. 7.
    Fujiwara A, Lim TH, An HS, Tanaka N, Jeon CH, Andersson GB, Haughton VM (2000) The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine 25:3036–3044. doi: 10.1097/00007632-200012010-00011 PubMedCrossRefGoogle Scholar
  8. 8.
    Hanson GR, Suggs JF, Freiberg AA, Durbhakula S, Li G (2006) Investigation of in vivo 6DOF total knee arthroplasty kinematics using a dual orthogonal fluoroscopic system. J Orthop Res 24:974–981. doi: 10.1002/jor.20141 PubMedCrossRefGoogle Scholar
  9. 9.
    Haughton VM, Rogers B, Meyerand ME, Resnick DK (2002) Measuring the axial rotation of lumbar vertebrae in vivo with MR imaging. AJNR Am J Neuroradiol 23:1110–1116PubMedGoogle Scholar
  10. 10.
    Holt PJ, Bull AM, Cashman PM, McGregor AH (2003) Kinematics of spinal motion during prolonged rowing. Int J Sports Med 24:597–602. doi: 10.1055/s-2003-43273 PubMedCrossRefGoogle Scholar
  11. 11.
    Jinkins JR, Dworkin JS, Damadian RV (2005) Upright, weight-bearing, dynamic-kinetic MRI of the spine: initial results. Eur Radiol 15:1815–1825. doi: 10.1007/s00330-005-2666-4 PubMedCrossRefGoogle Scholar
  12. 12.
    Karadimas EJ, Siddiqui M, Smith FW, Wardlaw D (2006) Positional MRI changes in supine versus sitting postures in patients with degenerative lumbar spine. J Spinal Disord Tech 19:495–500. doi: 10.1097/01.bsd.0000211213.98070.c2 PubMedCrossRefGoogle Scholar
  13. 13.
    Kasai Y, Morishita K, Kawakita E, Kondo T, Uchida A (2006) A new evaluation method for lumbar spinal instability: passive lumbar extension test. Phys Ther 86:1661–1667. doi: 10.2522/ptj.20050281 PubMedCrossRefGoogle Scholar
  14. 14.
    Kettler A, Marin F, Sattelmayer G, Mohr M, Mannel H, Durselen L, Claes L, Wilke HJ (2004) Finite helical axes of motion are a useful tool to describe the three-dimensional in vitro kinematics of the intact, injured and stabilised spine. Eur Spine J 13:553–559. doi: 10.1007/s00586-004-0710-8 PubMedCrossRefGoogle Scholar
  15. 15.
    Kotani Y, Abumi K, Shikinami Y, Takada T, Kadoya K, Shimamoto N, Ito M, Kadosawa T, Fujinaga T, Kaneda K (2002) Artificial intervertebral disc replacement using bioactive three-dimensional fabric: design, development, and preliminary animal study. Spine 27:929–935. doi: 10.1097/00007632-200205010-00008 discussion 935–926PubMedCrossRefGoogle Scholar
  16. 16.
    Kulig K, Powers CM, Landel RF, Chen H, Fredericson M, Guillet M, Butts K (2007) Segmental lumbar mobility in individuals with low back pain: in vivo assessment during manual and self-imposed motion using dynamic MRI. BMC Musculoskelet Disord 8:8. doi: 10.1186/1471-2474-8-8 PubMedCrossRefGoogle Scholar
  17. 17.
    Lee SW, Wong KW, Chan MK, Yeung HM, Chiu JL, Leong JC (2002) Development and validation of a new technique for assessing lumbar spine motion. Spine 27:E215–E220. doi: 10.1097/00007632-200204150-00022 PubMedCrossRefGoogle Scholar
  18. 18.
    Li G, DeFrate LE, Park SE, Gill TJ, Rubash HE (2005) In vivo articular cartilage contact kinematics of the knee: an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models. Am J Sports Med 33:102–107. doi: 10.1177/0363546504265577 PubMedCrossRefGoogle Scholar
  19. 19.
    Li G, Wan L, Kozanek M (2008) Determination of real-time in vivo cartilage contact deformation in the ankle joint. J Biomech 41:128–136. doi: 10.1016/j.jbiomech.2007.07.006 PubMedCrossRefGoogle Scholar
  20. 20.
    Lindsey DP, Swanson KE, Fuchs P, Hsu KY, Zucherman JF, Yerby SA (2003) The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine. Spine 28:2192–2197. doi: 10.1097/01.BRS.0000084877.88192.8E PubMedCrossRefGoogle Scholar
  21. 21.
    Masharawi Y, Rothschild B, Dar G, Peleg S, Robinson D, Been E, Hershkovitz I (2004) Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis. Spine 29:1755–1763. doi: 10.1097/01.BRS.0000134575.04084.EF PubMedCrossRefGoogle Scholar
  22. 22.
    McGregor AH, Patankar ZS, Bull AM (2005) Spinal kinematics in elite oarswomen during a routine physiological “step test”. Med Sci Sports Exerc 37:1014–1020. doi: 10.1097/00005768-200505001-00140 PubMedCrossRefGoogle Scholar
  23. 23.
    Ochia RS, Inoue N, Renner SM, Lorenz EP, Lim TH, Andersson GB, An HS (2006) Three-dimensional in vivo measurement of lumbar spine segmental motion. Spine 31:2073–2078. doi: 10.1097/01.brs.0000231435.55842.9e PubMedCrossRefGoogle Scholar
  24. 24.
    Ochia RS, Inoue N, Takatori R, Andersson GB, An HS (2007) In vivo measurements of lumbar segmental motion during axial rotation in asymptomatic and chronic low back pain male subjects. Spine 32:1394–1399. doi: 10.1097/BRS.0b013e318060122b PubMedCrossRefGoogle Scholar
  25. 25.
    Panjabi MM, Takata K, Goel VK (1983) Kinematics of lumbar intervertebral foramen. Spine 8:348–357. doi: 10.1097/00007632-198305000-00002 PubMedCrossRefGoogle Scholar
  26. 26.
    Panjabi MM, White AA 3rd (1980) Basic biomechanics of the spine. Neurosurgery 7:76–93. doi: 10.1097/00006123-198007000-00013 PubMedCrossRefGoogle Scholar
  27. 27.
    Pearcy MJ (1985) Stereo radiography of lumbar spine motion. Acta Orthop Scand Suppl 212:1–45PubMedGoogle Scholar
  28. 28.
    Pearcy MJ, Tibrewal SB (1984) Axial rotation and lateral bending in the normal lumbar spine measured by three-dimensional radiography. Spine 9:582–587. doi: 10.1097/00007632-198409000-00008 PubMedCrossRefGoogle Scholar
  29. 29.
    Perie D, Iatridis JC, Demers CN, Goswami T, Beaudoin G, Mwale F, Antoniou J (2006) Assessment of compressive modulus, hydraulic permeability and matrix content of trypsin-treated nucleus pulposus using quantitative MRI. J Biomech 39:1392–1400. doi: 10.1016/j.jbiomech.2005.04.015 PubMedCrossRefGoogle Scholar
  30. 30.
    SariAli el H, Lemaire JP, Pascal-Mousselard H, Carrier H, Skalli W (2006) In vivo study of the kinematics in axial rotation of the lumbar spine after total intervertebral disc replacement: long-term results: a 10–14 years follow up evaluation. Eur Spine J 15:1501–1510. doi: 10.1007/s00586-005-0016-5 CrossRefGoogle Scholar
  31. 31.
    Siddiqui M, Karadimas E, Nicol M, Smith FW, Wardlaw D (2006) Effects of X-STOP device on sagittal lumbar spine kinematics in spinal stenosis. J Spinal Disord Tech 19:328–333. doi: 10.1097/01.bsd.0000211297.52260.d5 PubMedCrossRefGoogle Scholar
  32. 32.
    Simon S, Davis M, Odhner D, Udupa J, Winkelstein B (2006) CT imaging techniques for describing motions of the cervicothoracic junction and cervical spine during flexion, extension, and cervical traction. Spine 31:44–50. doi: 10.1097/01.brs.0000192679.25878.f9 PubMedCrossRefGoogle Scholar
  33. 33.
    Steffen T, Rubin RK, Baramki HG, Antoniou J, Marchesi D, Aebi M (1997) A new technique for measuring lumbar segmental motion in vivo. Method, accuracy, and preliminary results. Spine 22:156–166. doi: 10.1097/00007632-199701150-00006 PubMedCrossRefGoogle Scholar
  34. 34.
    Wang S, Passias P, Li G, Li G, Wood K (2008) Measurement of vertebral kinematics using noninvasive image matching method-validation and application. Spine 33:E355–E361. doi: 10.1097/BRS.0b013e3181715295 PubMedCrossRefGoogle Scholar
  35. 35.
    Wong KW, Luk KD, Leong JC, Wong SF, Wong KK (2006) Continuous dynamic spinal motion analysis. Spine 31:414–419. doi: 10.1097/01.brs.0000199955.87517.82 PubMedCrossRefGoogle Scholar
  36. 36.
    Zhu Q, Larson CR, Sjovold SG, Rosler DM, Keynan O, Wilson DR, Cripton PA, Oxland TR (2007) Biomechanical evaluation of the Total Facet Arthroplasty System: 3-dimensional kinematics. Spine 32:55–62. doi: 10.1097/01.brs.0000250983.91339.9f PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Guoan Li
    • 1
  • Shaobai Wang
    • 1
    • 2
  • Peter Passias
    • 1
  • Qun Xia
    • 1
    • 3
  • Gang Li
    • 1
  • Kirkham Wood
    • 1
  1. 1.Bioengineering Laboratory, Department of Orthopaedic SurgeryMassachusetts General Hospital/Harvard Medical SchoolBostonUSA
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Tianjin Orthopaedic HospitalTianjinChina

Personalised recommendations