Advertisement

European Spine Journal

, Volume 18, Issue 6, pp 783–799 | Cite as

An update on bone substitutes for spinal fusion

  • Masashi Miyazaki
  • Hiroshi Tsumura
  • Jeffrey C. Wang
  • Ahmet AlanayEmail author
Review Article

Abstract

With the current advances in spinal surgery, an understanding of the precise biological mechanism of each bone substitute is necessary for inducing successful spinal fusion. In this review, the categories of bone substitutes include allografts, ceramics, demineralized bone matrix, osteoinductive factors, autogenous platelet concentrate, mesenchymal stem cells, and gene therapy. Further, clinical studies have been evaluated by their levels of evidence in order to elucidate the precise effect of the bone substitute employed and to establish clinical guidance. This article will review both clinical studies based on evidence and basic research in current advances in order to avoid as far as possible any chances of failure in the future and to understand cellular biology in novel technologies.

Keywords

Bone substitutes Spinal fusion Demineralized bone matrix Bone morphogenic protein Gene therapy 

References

  1. 1.
    Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P (2002) Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am 84-A:716–720PubMedGoogle Scholar
  2. 2.
    Alden TD, Pittman DD, Beres EJ, Hankins GR, Kallmes DF, Wisotsky BM, Kerns KM, Helm GA (1999) Percutaneous spinal fusion using bone morphogenetic protein-2 gene therapy. J Neurosurg 90:109–114PubMedCrossRefGoogle Scholar
  3. 3.
    An HS, Lynch K, Toth J (1995) Prospective comparison of autograft vs. allograft for adult posterolateral lumbar spine fusion: differences among freeze-dried, frozen, and mixed grafts. J Spinal Disord 8:131–135. doi: 10.1097/00002517-199504000-00007 PubMedCrossRefGoogle Scholar
  4. 4.
    An HS, Simpson JM, Glover JM, Stephany J (1995) Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine 20:2211–2216PubMedGoogle Scholar
  5. 5.
    Aurori BF, Weierman RJ, Lowell HA, Nadel CI, Parsons JR (1985) Pseudarthrosis after spinal fusion for scoliosis. A comparison of autogeneic and allogeneic bone grafts. Clin Orthop Relat Res 199:153–158PubMedGoogle Scholar
  6. 6.
    Baramki HG, Steffen T, Lander P, Chang M, Marchesi D (2000) The efficacy of interconnected porous hydroxyapatite in achieving posterolateral lumbar fusion in sheep. Spine 25:1053–1060. doi: 10.1097/00007632-200005010-00003 PubMedCrossRefGoogle Scholar
  7. 7.
    Baskin DS, Ryan P, Sonntag V, Westmark R, Widmayer MA (2003) A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SR allograft ring and the ATLANTIS anterior cervical plate. Spine 28:1219–1224. doi: 10.1097/00007632-200306150-00003 PubMedCrossRefGoogle Scholar
  8. 8.
    Bishop RC, Moore KA, Hadley MN (1996) Anterior cervical interbody fusion using autogeneic and allogeneic bone graft substrate: a prospective comparative analysis. J Neurosurg 85:206–210PubMedGoogle Scholar
  9. 9.
    Blattert TR, Delling G, Dalal PS, Toth CA, Balling H, Weckbach A (2002) Successful transpedicular lumbar interbody fusion by means of a composite of osteogenic protein-1 (rhBMP-7) and hydroxyapatite carrier: a comparison with autograft and hydroxyapatite in the sheep spine. Spine 27:2697–2705. doi: 10.1097/00007632-200212010-00009 PubMedCrossRefGoogle Scholar
  10. 10.
    Boden SD, Kang J, Sandhu H, Heller JG (2002) Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial. Spine 27:2662–2673. doi: 10.1097/00007632-200212010-00005 PubMedCrossRefGoogle Scholar
  11. 11.
    Boden SD, Martin GJ Jr, Horton WC, Truss TL, Sandhu HS (1998) Laparoscopic anterior spinal arthrodesis with rhBMP-2 in a titanium interbody threaded cage. J Spinal Disord 11:95–101. doi: 10.1097/00002517-199804000-00001 PubMedCrossRefGoogle Scholar
  12. 12.
    Boden SD, Martin GJ Jr, Morone MA, Ugbo JL, Moskovitz PA (1999) Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate. Spine 24:1179–1185. doi: 10.1097/00007632-199906150-00002 PubMedCrossRefGoogle Scholar
  13. 13.
    Boden SD, Titus L, Hair G, Liu Y, Viggeswarapu M, Nanes MS, Baranowski C (1998) Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine 23:2486–2492. doi: 10.1097/00007632-199812010-00003 PubMedCrossRefGoogle Scholar
  14. 14.
    Boden SD, Zdeblick TA, Sandhu HS, Heim SE (2000) The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine 25:376–381. doi: 10.1097/00007632-200002010-00020 PubMedCrossRefGoogle Scholar
  15. 15.
    Bomback DA, Grauer JN, Lugo R, Troiano N, Patel TC, Friedlaender GE (2004) Comparison of posterolateral lumbar fusion rates of Grafton Putty and OP-1 Putty in an athymic rat model. Spine 29:1612–1617. doi: 10.1097/01.BRS.0000132512.53305.A1 PubMedCrossRefGoogle Scholar
  16. 16.
    Bridwell KH, Sedgewick TA, O’Brien MF, Lenke LG, Baldus C (1993) The role of fusion and instrumentation in the treatment of degenerative spondylolisthesis with spinal stenosis. J Spinal Disord 6:461–472PubMedCrossRefGoogle Scholar
  17. 17.
    Brown MD, Malinin TI, Davis PB (1976) A roentgenographic evaluation of frozen allografts versus autografts in anterior cervical spine fusions. Clin Orthop Relat Res 119:231–236PubMedGoogle Scholar
  18. 18.
    Burkus JK, Dorchak JD, Sanders DL (2003) Radiographic assessment of interbody fusion using recombinant human bone morphogenetic protein type 2. Spine 28:372–377. doi: 10.1097/00007632-200302150-00012 PubMedCrossRefGoogle Scholar
  19. 19.
    Burkus JK, Gornet MF, Dickman CA, Zdeblick TA (2002) Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15:337–349PubMedGoogle Scholar
  20. 20.
    Burkus JK, Transfeldt EE, Kitchel SH, Watkins RG, Balderston RA (2002) Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine 27:2396–2408. doi: 10.1097/00007632-200211010-00015 PubMedCrossRefGoogle Scholar
  21. 21.
    Cammisa FP Jr, Lowery G, Garfin SR, Geisler FH, Klara PM, McGuire RA, Sassard WR, Stubbs H, Block JE (2004) Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine 29:660–666. doi: 10.1097/01.BRS.0000116588.17129.B9 PubMedCrossRefGoogle Scholar
  22. 22.
    Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7:259–264. doi: 10.1016/S1471-4914(01)02016-0 PubMedCrossRefGoogle Scholar
  23. 23.
    Carreon LY, Glassman SD, Anekstein Y, Puno RM (2005) Platelet gel (AGF) fails to increase fusion rates in instrumented posterolateral fusions. Spine 30:E243–E246. doi: 10.1097/01.brs.0000160846.85397.44 PubMedCrossRefGoogle Scholar
  24. 24.
    Cha CW, Boden SD (2003) Gene therapy applications for spine fusion. Spine 28:S74–S84. doi: 10.1097/00007632-200308011-00013 PubMedCrossRefGoogle Scholar
  25. 25.
    Chen WJ, Tsai TT, Chen LH, Niu CC, Lai PL, Fu TS, McCarthy K (2005) The fusion rate of calcium sulfate with local autograft bone compared with autologous iliac bone graft for instrumented short-segment spinal fusion. Spine 30:2293–2297. doi: 10.1097/01.brs.0000182087.35335.05 PubMedCrossRefGoogle Scholar
  26. 26.
    Chen Y, Luk KD, Cheung KM, Xu R, Lin MC, Lu WW, Leong JC, Kung HF (2003) Gene therapy for new bone formation using adeno-associated viral bone morphogenetic protein-2 vectors. Gene Ther 10:1345–1353. doi: 10.1038/sj.gt.3301999 PubMedCrossRefGoogle Scholar
  27. 27.
    Choi Y, Oldenburg FP, Sage L, Johnstone B, Yoo JU (2007) A bridging demineralized bone implant facilitates posterolateral lumbar fusion in New Zealand white rabbits. Spine 32:36–41. doi: 10.1097/01.brs.0000250982.41666.55 PubMedCrossRefGoogle Scholar
  28. 28.
    Dimar JR, Glassman SD, Burkus KJ, Carreon LY (2006) Clinical outcomes and fusion success at 2 years of single-level instrumented posterolateral fusions with recombinant human bone morphogenetic protein-2/compression resistant matrix versus iliac crest bone graft. Spine 31:2534–2539. doi: 10.1097/01.brs.0000240715.78657.81 PubMedCrossRefGoogle Scholar
  29. 29.
    Dodd CA, Fergusson CM, Freedman L, Houghton GR, Thomas D (1988) Allograft versus autograft bone in scoliosis surgery. J Bone Joint Surg Br 70:431–434PubMedGoogle Scholar
  30. 30.
    Dumont RJ, Dayoub H, Li JZ, Dumont AS, Kallmes DF, Hankins GR, Helm GA (2002) Ex vivo bone morphogenetic protein-9 gene therapy using human mesenchymal stem cells induces spinal fusion in rodents. Neurosurgery 51:1239–1244. doi: 10.1097/00006123-200211000-00020 PubMedCrossRefGoogle Scholar
  31. 31.
    Epstein NE (2006) A preliminary study of the efficacy of beta tricalcium phosphate as a bone expander for instrumented posterolateral lumbar fusions. J Spinal Disord Tech 19:424–429. doi: 10.1097/00024720-200608000-00009 PubMedCrossRefGoogle Scholar
  32. 32.
    Feeley BT, Conduah AH, Sugiyama O, Krenek L, Chen IS, Lieberman JR (2006) In vivo molecular imaging of adenoviral versus lentiviral gene therapy in two bone formation models. J Orthop Res 24:1709–1721. doi: 10.1002/jor.20229 PubMedCrossRefGoogle Scholar
  33. 33.
    Ferrara N, Houck K, Jakeman L, Leung DW (1992) Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 13:18–32. doi: 10.1210/er.13.1.18 PubMedGoogle Scholar
  34. 34.
    Fisher CG, Wood KB (2007) Introduction to and techniques of evidence-based medicine. Spine 32:S66–S72. doi: 10.1097/BRS.0b013e318145308d PubMedCrossRefGoogle Scholar
  35. 35.
    Flatley TJ, Lynch KL, Benson M (1983) Tissue response to implants of calcium phosphate ceramic in the rabbit spine. Clin Orthop Relat Res 179:246–252. doi: 10.1097/00003086-198310000-00038 PubMedCrossRefGoogle Scholar
  36. 36.
    Gan Y, Dai K, Zhang P, Tang T, Zhu Z, Lu J (2008) The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 29:3973–3982. doi: 10.1016/j.biomaterials.2008.06.026 PubMedCrossRefGoogle Scholar
  37. 37.
    Girardi FP, Cammisa FP Jr (2003) The effect of bone graft extenders to enhance the performance of iliac crest bone grafts in instrumented lumbar spine fusion. Orthopedics 26:s545–s548PubMedGoogle Scholar
  38. 38.
    Grauer JN, Patel TC, Erulkar JS, Troiano NW, Panjabi MM, Friedlaender GE (2001) Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion. Spine 26:127–133. doi: 10.1097/00007632-200101150-00004 PubMedCrossRefGoogle Scholar
  39. 39.
    Hadjipavlou AG, Simmons JW, Tzermiadianos MN, Katonis PG, Simmons DJ (2001) Plaster of Paris as bone substitute in spinal surgery. Eur Spine J 10(Suppl 2):S189–S196. doi: 10.1007/s005860100329 PubMedGoogle Scholar
  40. 40.
    Hee HT, Majd ME, Holt RT, Myers L (2003) Do autologous growth factors enhance transforaminal lumbar interbody fusion? Eur Spine J 12:400–407. doi: 10.1007/s00586-003-0548-5 PubMedCrossRefGoogle Scholar
  41. 41.
    Heise U, Osborn JF, Duwe F (1990) Hydroxyapatite ceramic as a bone substitute. Int Orthop 14:329–338. doi: 10.1007/BF00178768 PubMedCrossRefGoogle Scholar
  42. 42.
    Helm GA, Alden TD, Beres EJ, Hudson SB, Das S, Engh JA, Pittman DD, Kerns KM, Kallmes DF (2000) Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent. J Neurosurg 92:191–196PubMedGoogle Scholar
  43. 43.
    Hidaka C, Goshi K, Rawlins B, Boachie-Adjei O, Crystal RG (2003) Enhancement of spine fusion using combined gene therapy and tissue engineering BMP-7-expressing bone marrow cells and allograft bone. Spine 28:2049–2057. doi: 10.1097/01.BRS.0000091661.11228.C3 PubMedCrossRefGoogle Scholar
  44. 44.
    Hile DD, Kandziora F, Lewandrowski KU, Doherty SA, Kowaleski MP, Trantolo DJ (2006) A poly (propylene glycol-co-fumaric acid) based bone graft extender for lumbar spinal fusion: in vivo assessment in a rabbit model. Eur Spine J 15:936–943. doi: 10.1007/s00586-005-1001-8 PubMedCrossRefGoogle Scholar
  45. 45.
    Jackson KA, Mi T, Goodell MA (1999) Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA 96:14482–14486. doi: 10.1073/pnas.96.25.14482 PubMedCrossRefGoogle Scholar
  46. 46.
    Jenis LG, Wheeler D, Parazin SJ, Connolly RJ (2002) The effect of osteogenic protein-1 in instrumented and noninstrumented posterolateral fusion in rabbits. Spine J 2:173–178. doi: 10.1016/S1529-9430(02)00183-3 PubMedCrossRefGoogle Scholar
  47. 47.
    Johnsson R, Stromqvist B, Aspenberg P (2002) Randomized radiostereometric study comparing osteogenic protein-1 (BMP-7) and autograft bone in human noninstrumented posterolateral lumbar fusion: 2002 Volvo Award in clinical studies. Spine 27:2654–2661. doi: 10.1097/00007632-200212010-00004 PubMedCrossRefGoogle Scholar
  48. 48.
    Jorgenson SS, Lowe TG, France J, Sabin J (1994) A prospective analysis of autograft versus allograft in posterolateral lumbar fusion in the same patient. A minimum of 1-year follow-up in 144 patients. Spine 19:2048–2053PubMedCrossRefGoogle Scholar
  49. 49.
    Kaito T, Mukai Y, Nishikawa M, Ando W, Yoshikawa H, Myoui A (2006) Dual hydroxyapatite composite with porous and solid parts: experimental study using canine lumbar interbody fusion model. J Biomed Mater Res B Appl Biomater 78:378–384. doi: 10.1002/jbm.b.30498 PubMedGoogle Scholar
  50. 50.
    Kanayama M, Hashimoto T, Shigenobu K, Yamane S, Bauer TW, Togawa D (2006) A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute: emphasis of surgical exploration and histologic assessment. Spine 31:1067–1074. doi: 10.1097/01.brs.0000216444.01888.21 PubMedCrossRefGoogle Scholar
  51. 51.
    Korovessis P, Koureas G, Zacharatos S, Papazisis Z, Lambiris E (2005) Correlative radiological, self-assessment and clinical analysis of evolution in instrumented dorsal and lateral fusion for degenerative lumbar spine disease. Autograft versus coralline hydroxyapatite. Eur Spine J 14:630–638. doi: 10.1007/s00586-004-0855-5 PubMedCrossRefGoogle Scholar
  52. 52.
    Lee TC, Ho JT, Hung KS, Chen WF, Chung YH, Yang YL (2006) Bone morphogenetic protein gene therapy using a fibrin scaffold for a rabbit spinal-fusion experiment. Neurosurgery 58:373–380. doi: 10.1227/01.NEU.0000199725.03186.F6 PubMedCrossRefGoogle Scholar
  53. 53.
    Lee YP, Jo M, Luna M, Chien B, Lieberman JR, Wang JC (2005) The efficacy of different commercially available demineralized bone matrix substances in an athymic rat model. J Spinal Disord Tech 18:439–444. doi: 10.1097/01.bsd.0000175696.66049.f7 PubMedCrossRefGoogle Scholar
  54. 54.
    Lind M, Deleuran B, Thestrup-Pedersen K, Soballe K, Eriksen EF, Bunger C (1995) Chemotaxis of human osteoblasts. Effects of osteotropic growth factors. APMIS 103:140–146PubMedCrossRefGoogle Scholar
  55. 55.
    Lindfors NC, Tallroth K, Aho AJ (2002) Bioactive glass as bone-graft substitute for posterior spinal fusion in rabbit. J Biomed Mater Res 63:237–244. doi: 10.1002/jbm.10177 PubMedCrossRefGoogle Scholar
  56. 56.
    Louis-Ugbo J, Murakami H, Kim HS, Minamide A, Boden SD (2004) Evidence of osteoinduction by Grafton demineralized bone matrix in nonhuman primate spinal fusion. Spine 29:360–366. doi: 10.1097/01.BRS.0000090823.12652.F9 PubMedCrossRefGoogle Scholar
  57. 57.
    Lowery GL, Kulkarni S, Pennisi AE (1999) Use of autologous growth factors in lumbar spinal fusion. Bone 25:47S–50S. doi: 10.1016/S8756-3282(99)00132-5 PubMedCrossRefGoogle Scholar
  58. 58.
    Lu SS, Zhang X, Soo C, Hsu T, Napoli A, Aghaloo T, Wu BM, Tsou P, Ting K, Wang JC (2007) The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J 7:50–60. doi: 10.1016/j.spinee.2006.04.020 PubMedCrossRefGoogle Scholar
  59. 59.
    Mack CA, Song WR, Carpenter H, Wickham TJ, Kovesdi I, Harvey BG, Magovern CJ, Isom OW, Rosengart T, Falck-Pedersen E, Hackett NR, Crystal RG, Mastrangeli A (1997) Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum Gene Ther 8:99–109. doi: 10.1089/hum.1997.8.1-99 PubMedCrossRefGoogle Scholar
  60. 60.
    Martin GJ Jr, Boden SD, Titus L, Scarborough NL (1999) New formulations of demineralized bone matrix as a more effective graft alternative in experimental posterolateral lumbar spine arthrodesis. Spine 24:637–645. doi: 10.1097/00007632-199904010-00005 PubMedCrossRefGoogle Scholar
  61. 61.
    McClellan JW, Mulconrey DS, Forbes RJ, Fullmer N (2006) Vertebral bone resorption after transforaminal lumbar interbody fusion with bone morphogenetic protein (rhBMP-2). J Spinal Disord Tech 19:483–486. doi: 10.1097/01.bsd.0000211231.83716.4b PubMedCrossRefGoogle Scholar
  62. 62.
    McGuire RA, Amundson GM (1993) The use of primary internal fixation in spondylolisthesis. Spine 18:1662–1672. doi: 10.1097/00007632-199309000-00015 PubMedCrossRefGoogle Scholar
  63. 63.
    Minamide A, Yoshida M, Kawakami M, Yamasaki S, Kojima H, Hashizume H, Boden SD (2005) The use of cultured bone marrow cells in type I collagen gel and porous hydroxyapatite for posterolateral lumbar spine fusion. Spine 30:1134–1138. doi: 10.1097/01.brs.0000162394.75425.04 PubMedCrossRefGoogle Scholar
  64. 64.
    Miyazaki M, Sugiyama O, Tow B, Zou J, Morishita Y, Wei F, Napoli A, Sintuu C, Lieberman JR, Wang JC (2008) The effects of lentiviral gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Spinal Disord Tech 21:372–379. doi: 10.1097/BSD.0b013e31814cf51d PubMedCrossRefGoogle Scholar
  65. 65.
    Motomiya M, Ito M, Takahata M, Kadoya K, Irie K, Abumi K, Minami A (2007) Effect of hydroxyapatite porous characteristics on healing outcomes in rabbit posterolateral spinal fusion model. Eur Spine J 16:2215–2224. doi: 10.1007/s00586-007-0501-0 PubMedCrossRefGoogle Scholar
  66. 66.
    Muschik M, Ludwig R, Halbhubner S, Bursche K, Stoll T (2001) Beta-tricalcium phosphate as a bone substitute for dorsal spinal fusion in adolescent idiopathic scoliosis: preliminary results of a prospective clinical study. Eur Spine J 10(Suppl 2):S178–S184. doi: 10.1007/s005860100271 PubMedCrossRefGoogle Scholar
  67. 67.
    Nakahara H, Dennis JE, Bruder SP, Haynesworth SE, Lennon DP, Caplan AI (1991) In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp Cell Res 195:492–503. doi: 10.1016/0014-4827(91)90401-F PubMedCrossRefGoogle Scholar
  68. 68.
    Obremskey WT, Pappas N, Attallah-Wasif E, Tornetta PIII, Bhandari M (2005) Level of evidence in orthopaedic journals. J Bone Joint Surg Am 87:2632–2638. doi: 10.2106/JBJS.E.00370 PubMedCrossRefGoogle Scholar
  69. 69.
    Passuti N, Daculsi G, Rogez JM, Martin S, Bainvel JV (1989) Macroporous calcium phosphate ceramic performance in human spine fusion. Clin Orthop Relat Res 248:169–176PubMedGoogle Scholar
  70. 70.
    Peterson B, Iglesias R, Zhang J, Wang JC, Lieberman JR (2005) Genetically modified human derived bone marrow cells for posterolateral lumbar spine fusion in athymic rats: beyond conventional autologous bone grafting. Spine 30:283–289. doi: 10.1097/01.brs.0000152380.71248.fe PubMedCrossRefGoogle Scholar
  71. 71.
    Peterson B, Whang PG, Iglesias R, Wang JC, Lieberman JR (2004) Osteoinductivity of commercially available demineralized bone matrix. Preparations in a spine fusion model. J Bone Joint Surg Am 86-A:2243–2250PubMedGoogle Scholar
  72. 72.
    Pradhan BB, Bae HW, Dawson EG, Patel VV, Delamarter RB (2006) Graft resorption with the use of bone morphogenetic protein: lessons from anterior lumbar interbody fusion using femoral ring allografts and recombinant human bone morphogenetic protein-2. Spine 31:E277–E284. doi: 10.1097/01.brs.0000216442.12092.01 PubMedCrossRefGoogle Scholar
  73. 73.
    Price CT, Connolly JF, Carantzas AC, Ilyas I (2003) Comparison of bone grafts for posterior spinal fusion in adolescent idiopathic scoliosis. Spine 28:793–798. doi: 10.1097/00007632-200304150-00012 PubMedCrossRefGoogle Scholar
  74. 74.
    Ransford AO, Morley T, Edgar MA, Webb P, Passuti N, Chopin D, Morin C, Michel F, Garin C, Pries D (1998) Synthetic porous ceramic compared with autograft in scoliosis surgery. A prospective, randomized study of 341 patients. J Bone Joint Surg Br 80:13–18. doi: 10.1302/0301-620X.80B1.7276 PubMedCrossRefGoogle Scholar
  75. 75.
    Salamon ML, Althausen PL, Gupta MC, Laubach J (2003) The effects of BMP-7 in a rat posterolateral intertransverse process fusion model. J Spinal Disord Tech 16:90–95PubMedGoogle Scholar
  76. 76.
    Sassard WR, Eidman DK, Gray PM, Block JE, Russo R, Russell JL, Taboada EM (2000) Augmenting local bone with Grafton demineralized bone matrix for posterolateral lumbar spine fusion: avoiding second site autologous bone harvest. Orthopedics 23:1059–1064PubMedGoogle Scholar
  77. 77.
    Savolainen S, Usenius JP, Hernesniemi J (1994) Iliac crest versus artificial bone grafts in 250 cervical fusions. Acta Neurochir (Wien) 129:54–57. doi: 10.1007/BF01400873 CrossRefGoogle Scholar
  78. 78.
    Schunemann HJ, Jaeschke R, Cook DJ, Bria WF, El-Solh AA, Ernst A, Fahy BF, Gould MK, Horan KL, Krishnan JA, Manthous CA, Maurer JR, McNicholas WT, Oxman AD, Rubenfeld G, Turino GM, Guyatt G (2006) An official ATS statement: grading the quality of evidence and strength of recommendations in ATS guidelines and recommendations. Am J Respir Crit Care Med 174:605–614. doi: 10.1164/rccm.200602-197ST PubMedCrossRefGoogle Scholar
  79. 79.
    Shields LB, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB (2006) Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 31:542–547. doi: 10.1097/01.brs.0000201424.27509.72 PubMedCrossRefGoogle Scholar
  80. 80.
    Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland JM, Hilibrand AS, Vaccaro AR, Albert TJ (2003) Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine 28:134–139. doi: 10.1097/00007632-200301150-00008 PubMedCrossRefGoogle Scholar
  81. 81.
    Slosar PJ, Josey R, Reynolds J (2007) Accelerating lumbar fusions by combining rhBMP-2 with allograft bone: a prospective analysis of interbody fusion rates and clinical outcomes. Spine J 7:301–307. doi: 10.1016/j.spinee.2006.10.015 PubMedCrossRefGoogle Scholar
  82. 82.
    Stieger K, Le Meur G, Lasne F, Weber M, Deschamps JY, Nivard D, Mendes-Madeira A, Provost N, Martin L, Moullier P, Rolling F (2006) Long-term doxycycline-regulated transgene expression in the retina of nonhuman primates following subretinal injection of recombinant AAV vectors. Mol Ther 13:967–975. doi: 10.1016/j.ymthe.2005.12.001 PubMedCrossRefGoogle Scholar
  83. 83.
    Sugiyama O, An DS, Kung SP, Feeley BT, Gamradt S, Liu NQ, Chen IS, Lieberman JR (2005) Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther 11:390–398. doi: 10.1016/j.ymthe.2004.10.019 PubMedCrossRefGoogle Scholar
  84. 84.
    Thalgott JS, Fritts K, Giuffre JM, Timlin M (1999) Anterior interbody fusion of the cervical spine with coralline hydroxyapatite. Spine 24:1295–1299. doi: 10.1097/00007632-199907010-00005 PubMedCrossRefGoogle Scholar
  85. 85.
    Thalgott JS, Giuffre JM, Klezl Z, Timlin M (2002) Anterior lumbar interbody fusion with titanium mesh cages, coralline hydroxyapatite, and demineralized bone matrix as part of a circumferential fusion. Spine J 2:63–69. doi: 10.1016/S1529-9430(01)00155-3 PubMedCrossRefGoogle Scholar
  86. 86.
    Thalgott JS, Klezl Z, Timlin M, Giuffre JM (2002) Anterior lumbar interbody fusion with processed sea coral (coralline hydroxyapatite) as part of a circumferential fusion. Spine 27:E518–E525. doi: 10.1097/00007632-200212150-00011 PubMedCrossRefGoogle Scholar
  87. 87.
    Tsuang YH, Yang RS, Chen PQ, Liu TK (1989) Experimental allograft in spinal fusion in dogs. Taiwan Yi Xue Hui Za Zhi 88:989–994PubMedGoogle Scholar
  88. 88.
    Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899. doi: 10.1126/science.150.3698.893 PubMedCrossRefGoogle Scholar
  89. 89.
    Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop Relat Res 53:243–283. doi: 10.1097/00003086-196707000-00026 PubMedCrossRefGoogle Scholar
  90. 90.
    Urist MR, Strates BS (1970) Bone formation in implants of partially and wholly demineralized bone matrix. Including observations on acetone-fixed intra and extracellular proteins. Clin Orthop Relat Res 71:271–278. doi: 10.1097/00003086-197007000-00031 PubMedCrossRefGoogle Scholar
  91. 91.
    Vaccaro AR, Whang PG, Patel T, Phillips FM, Anderson DG, Albert TJ, Hilibrand AS, Brower RS, Kurd MF, Appannagari A, Patel M, Fischgrund JS (2007) The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft for posterolateral lumbar arthrodesis: minimum 4-year follow-up of a pilot study. Spine J 8:457–465. doi: 10.1016/j.spinee.2007.03.012 PubMedCrossRefGoogle Scholar
  92. 92.
    Vaccaro AR, Anderson DG, Patel T, Fischgrund J, Truumees E, Herkowitz HN, Phillips F, Hilibrand A, Albert TJ, Wetzel T, McCulloch JA (2005) Comparison of OP-1 Putty (rhBMP-7) to iliac crest autograft for posterolateral lumbar arthrodesis: a minimum 2-year follow-up pilot study. Spine 30:2709–2716. doi: 10.1097/01.brs.0000190812.08447.ba PubMedCrossRefGoogle Scholar
  93. 93.
    Vaccaro AR, Patel T, Fischgrund J, Anderson DG, Truumees E, Herkowitz H, Phillips F, Hilibrand A, Albert TJ (2003) A pilot safety and efficacy study of OP-1 putty (rhBMP-7) as an adjunct to iliac crest autograft in posterolateral lumbar fusions. Eur Spine J 12:495–500. doi: 10.1007/s00586-003-0561-8 PubMedCrossRefGoogle Scholar
  94. 94.
    Vaccaro AR, Patel T, Fischgrund J, Anderson DG, Truumees E, Herkowitz H, Phillips F, Hilibrand A, Albert TJ (2005) A 2-year follow-up pilot study evaluating the safety and efficacy of op-1 putty (rhbmp-7) as an adjunct to iliac crest autograft in posterolateral lumbar fusions. Eur Spine J 14:623–629. doi: 10.1007/s00586-004-0845-7 PubMedCrossRefGoogle Scholar
  95. 95.
    Vaccaro AR, Patel T, Fischgrund J, Anderson DG, Truumees E, Herkowitz HN, Phillips F, Hilibrand A, Albert TJ, Wetzel T, McCulloch JA (2004) A pilot study evaluating the safety and efficacy of OP-1 Putty (rhBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis for degenerative spondylolisthesis. Spine 29:1885–1892. doi: 10.1097/01.brs.0000137062.79201.98 PubMedCrossRefGoogle Scholar
  96. 96.
    Vaccaro AR, Stubbs HA, Block JE (2007) Demineralized bone matrix composite grafting for posterolateral spinal fusion. Orthopedics 30:567–570PubMedGoogle Scholar
  97. 97.
    Vadala G, Sowa GA, Smith L, Hubert MG, Levicoff EA, Denaro V, Gilbertson LG, Kang JD (2007) Regulation of transgene expression using an inducible system for improved safety of intervertebral disc gene therapy. Spine 32:1381–1387. doi: 10.1097/BRS.0b013e3180601215 PubMedCrossRefGoogle Scholar
  98. 98.
    Vaidya R, Carp J, Sethi A, Bartol S, Craig J, Les CM (2007) Complications of anterior cervical discectomy and fusion using recombinant human bone morphogenetic protein-2. Eur Spine J 16:1257–1265. doi: 10.1007/s00586-007-0351-9 PubMedCrossRefGoogle Scholar
  99. 99.
    Viggeswarapu M, Boden SD, Liu Y, Hair GA, Louis-Ugbo J, Murakami H, Kim HS, Mayr MT, Hutton WC, Titus L (2001) Adenoviral delivery of LIM mineralization protein-1 induces new-bone formation in vitro and in vivo. J Bone Joint Surg Am 83-A:364–376PubMedGoogle Scholar
  100. 100.
    Wang JC, Alanay A, Mark D, Kanim LE, Campbell PA, Dawson EG, Lieberman JR (2007) A comparison of commercially available demineralized bone matrix for spinal fusion. Eur Spine J 16:1233–1240. doi: 10.1007/s00586-006-0282-x PubMedCrossRefGoogle Scholar
  101. 101.
    Wang JC, Kanim LE, Yoo S, Campbell PA, Berk AJ, Lieberman JR (2003) Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg Am 85-A:905–911PubMedGoogle Scholar
  102. 102.
    Wang T, Dang G, Guo Z, Yang M (2005) Evaluation of autologous bone marrow mesenchymal stem cell-calcium phosphate ceramic composite for lumbar fusion in rhesus monkey interbody fusion model. Tissue Eng 11:1159–1167. doi: 10.1089/ten.2005.11.1159 PubMedCrossRefGoogle Scholar
  103. 103.
    Weiner BK, Walker M (2003) Efficacy of autologous growth factors in lumbar intertransverse fusions. Spine 28:1968–1970. doi: 10.1097/01.BRS.0000083141.02027.48 PubMedCrossRefGoogle Scholar
  104. 104.
    Williams JT, Southerland SS, Souza J, Calcutt AF, Cartledge RG (1999) Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 65:22–26PubMedGoogle Scholar
  105. 105.
    Wupperman R, Davis R, Obremskey WT (2007) Level of evidence in Spine compared to other orthopedic journals. Spine 32:388–393. doi: 10.1097/01.brs.0000254109.12449.6c PubMedCrossRefGoogle Scholar
  106. 106.
    Xie Y, Chopin D, Morin C, Hardouin P, Zhu Z, Tang J, Lu J (2006) Evaluation of the osteogenesis and biodegradation of porous biphasic ceramic in the human spine. Biomaterials 27:2761–2767. doi: 10.1016/j.biomaterials.2005.12.011 PubMedCrossRefGoogle Scholar
  107. 107.
    Yang Y, Nunes FA, Berencsi K, Furth EE, Gonczol E, Wilson JM (1994) Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 91:4407–4411. doi: 10.1073/pnas.91.10.4407 PubMedCrossRefGoogle Scholar
  108. 108.
    Yee AJ, Bae HW, Friess D, Robbin M, Johnstone B, Yoo JU (2003) Augmentation of rabbit posterolateral spondylodesis using a novel demineralized bone matrix-hyaluronan putty. Spine 28:2435–2440. doi: 10.1097/01.BRS.0000090828.65638.8C PubMedCrossRefGoogle Scholar
  109. 109.
    Young WF, Rosenwasser RH (1993) An early comparative analysis of the use of fibular allograft versus autologous iliac crest graft for interbody fusion after anterior cervical discectomy. Spine 18:1123–1124. doi: 10.1097/00007632-199307000-00002 PubMedCrossRefGoogle Scholar
  110. 110.
    Zdeblick TA (1993) A prospective, randomized study of lumbar fusion. Preliminary results. Spine 18:983–991PubMedCrossRefGoogle Scholar
  111. 111.
    Zdeblick TA, Ducker TB (1991) The use of freeze-dried allograft bone for anterior cervical fusions. Spine 16:726–729. doi: 10.1097/00007632-199107000-00006 PubMedCrossRefGoogle Scholar
  112. 112.
    Zhang ZH, Yin H, Yang K, Zhang T, Dong F, Dang G, Lou SQ, Cai Q (1983) Anterior intervertebral disc excision and bone grafting in cervical spondylotic myelopathy. Spine 8:16–19. doi: 10.1097/00007632-198301000-00002 PubMedCrossRefGoogle Scholar
  113. 113.
    Zhu W, Rawlins BA, Boachie-Adjei O, Myers ER, Arimizu J, Choi E, Lieberman JR, Crystal RG, Hidaka C (2004) Combined bone morphogenetic protein-2 and -7 gene transfer enhances osteoblastic differentiation and spine fusion in a rodent model. J Bone Miner Res 19:2021–2032. doi: 10.1359/JBMR.040821 PubMedCrossRefGoogle Scholar
  114. 114.
    Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880PubMedGoogle Scholar
  115. 115.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228. doi: 10.1089/107632701300062859 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Masashi Miyazaki
    • 1
  • Hiroshi Tsumura
    • 1
  • Jeffrey C. Wang
    • 2
  • Ahmet Alanay
    • 3
    Email author
  1. 1.Department of Orthopaedic SurgeryOita UniversityOitaJapan
  2. 2.Department of Orthopaedic SurgeryUniversity of California at Los AngelesLos AngelesUSA
  3. 3.Department of Orthopaedics and Traumatology, Faculty of MedicineHacettepe UniversityAnkaraTurkey

Personalised recommendations