Advertisement

European Spine Journal

, Volume 18, Issue 8, pp 1079–1090 | Cite as

A review of methods for quantitative evaluation of axial vertebral rotation

  • Tomaž Vrtovec
  • Franjo Pernuš
  • Boštjan Likar
Review Article

Abstract

Quantitative evaluation of axial vertebral rotation is essential for the determination of reference values in normal and pathological conditions and for understanding the mechanisms of the progression of spinal deformities. However, routine quantitative evaluation of axial vertebral rotation is difficult and error-prone due to the limitations of the observer, characteristics of the observed vertebral anatomy and specific imaging properties. The scope of this paper is to review the existing methods for quantitative evaluation of axial vertebral rotation from medical images along with all relevant publications, which may provide a valuable resource for studying the existing methods or developing new methods and evaluation strategies. The reviewed methods are divided into the methods for evaluation of axial vertebral rotation in 2D images and the methods for evaluation of axial vertebral rotation in 3D images. Key evaluation issues and future considerations, supported by the results of the overview, are also discussed.

Keywords

Spine Axial vertebral rotation 2D images 3D images Review of methods 

Notes

Acknowledgments

This work has been supported by the Ministry of Higher Education, Science and Technology, Slovenia, under grants P2–0232, L2–7381, L2–9758, and J2–0716.

Conflict of interest statement

None.

References

  1. 1.
    Aaro S, Dahlborn M (1981) Estimation of vertebral rotation and the spinal and rib cage deformity in scoliosis by computer-tomography. Spine 6:460–467. doi: 10.1097/00007632-198109000-00007 PubMedCrossRefGoogle Scholar
  2. 2.
    Adam C, Askin G (2006) Automatic measurement of vertebral rotation in idiopathic scoliosis. Spine 31:E80–E83. doi: 10.1097/01.brs.0000197653.64796.9d PubMedCrossRefGoogle Scholar
  3. 3.
    André B, Dansereau J, Labelle H (1992) Effect of radiographic landmark identification errors on the accuracy of three-dimensional reconstruction of the human spine. Med Biol Eng Comput 30:569–575. doi: 10.1007/BF02446787 PubMedCrossRefGoogle Scholar
  4. 4.
    André B, Dansereau J, Labelle H (1994) Optimized vertical stereo base radiographic setup for the clinical threedimensional reconstruction of the human spine. J Biomech 27:1023–1035. doi: 10.1016/0021-9290(94)90219-4 PubMedCrossRefGoogle Scholar
  5. 5.
    Aronsson D, Stokes I, Ronchetti P, Richards B (1996) Surgical correction of vertebral axial rotation in adolescent idiopathic scoliosis: prediction by lateral bending films. J Spinal Disord Tech 9:214–219Google Scholar
  6. 6.
    Aubin C, Dansereau J, Parent F, Labelle H, de Guise J (1997) Morphometric evaluations of personalised 3D reconstructions and geometric models of the human spine. Med Biol Eng Comput 35:611–618. doi: 10.1007/BF02510968 PubMedCrossRefGoogle Scholar
  7. 7.
    Aubin C, Dansereau J, Petit Y, Parent F, De Guise J, Labelle H (1998) Three dimensional measurement of wedged scoliotic vertebrae and intervertebral disks. Eur Spine J 7:59–65. doi: 10.1007/s005860050029 PubMedCrossRefGoogle Scholar
  8. 8.
    Barsanti C, de Bari A, Covino B (1990) The torsion meter: a critical review. J Pediatr Orthop 10:527–531PubMedGoogle Scholar
  9. 9.
    Benameur S, Mignotte M, Labelle H, De Guise J (2005) A hierarchical statistical modeling approach for the unsupervised 3-D biplanar reconstruction of the scoliotic spine. IEEE Trans Biomed Eng 52:2041–2057. doi: 10.1109/TBME.2005.857665 PubMedCrossRefGoogle Scholar
  10. 10.
    Benson D, Schultz A, Dewald R (1976) Roentgenographic evaluation of vertebral rotation. J Bone Jt Surg Am 58:1125–1129Google Scholar
  11. 11.
    Bifulco P, Sansone M, Cesarelli M, Allen R, Bracale M (2002) Estimation of out-of-plane vertebra rotations on radiographic projections using CT data: a simulation study. Med Eng Phys 24:295–300. doi: 10.1016/S1350-4533(02)00021-8 PubMedCrossRefGoogle Scholar
  12. 12.
    Birchall D, Hughes D, Gregson B, Williamson B (2005) Demonstration of vertebral and disc mechanical torsion in adolescent idiopathic scoliosis using three-dimensional MR imaging. Eur Spine J 14:123–129. doi: 10.1007/s00586-004-0705-5 PubMedCrossRefGoogle Scholar
  13. 13.
    Birchall D, Hughes D, Hindle J, Robinson L, Williamson J (1997) Measurement of vertebral rotation in adolescent idiopathic scoliosis using three-dimensional magnetic resonance imaging. Spine 22:2403–2407. doi: 10.1097/00007632-199710150-00016 PubMedCrossRefGoogle Scholar
  14. 14.
    Boisvert J, Cheriet F, Pennec X, Labelle H, Ayache N (2008) Geometric variability of the scoliotic spine using statistics on articulated shape models. IEEE Trans Med Imaging 27:557–568. doi: 10.1109/TMI.2007.911474 PubMedCrossRefGoogle Scholar
  15. 15.
    Brown R, Burstein A, Nash C, Schock C (1976) Spinal analysis using a three-dimensional radiographic technique. J Biomech 9:355–365. doi: 10.1016/0021-9290(76)90113-5 PubMedCrossRefGoogle Scholar
  16. 16.
    Bunnell W (1985) Vertebral rotation: a simple method of measurement on routine radiographs. Orthop Trans 9:114Google Scholar
  17. 17.
    Chen YT, Wang MS (2004) Three-dimensional reconstruction and fusion for multi-modality spinal images. Comput Med Imaging Graph 28:21–31. doi: 10.1016/j.compmedimag.2003.08.001 PubMedCrossRefGoogle Scholar
  18. 18.
    Chi WM, Cheng CW, Yeh WC, Chuang SC, Chang TS, Chen JH (2006) Vertebral axial rotation measurement method. Comput Methods Programs Biomed 81:8–17PubMedGoogle Scholar
  19. 19.
    Cholewicki J, Crisco J, Oxland T, Yamamoto I, Panjabi M (1996) Effects of posture and structure on threedimensional coupled rotations in the lumbar spine: a biomechanical analysis. Spine 21:2421–2428. doi: 10.1097/00007632-199611010-00003 PubMedCrossRefGoogle Scholar
  20. 20.
    Cobb J (1948) Outline for the study of scoliosis. Am Acad Orthop Surg Instr Course Lect 5:261–275Google Scholar
  21. 21.
    Coetsier M, Vercauteren M, Moerman P (1977) A new radiographic method for measuring vertebral rotation in scoliosis. Acta Orthop Belg 43:598–605PubMedGoogle Scholar
  22. 22.
    Cyteval C, Thomas E, Picot M, Derieffy P, Blotman F, Taourel P (2002) Normal vertebral body dimensions: a new measurement method using MRI. Osteoporos Int 13:468–473. doi: 10.1007/s001980200056 PubMedCrossRefGoogle Scholar
  23. 23.
    Dang N, Moreau M, Hill D, Mahood J, Raso J (2005) Intra-observer reproducibility and interobserver reliability of the radiographic parameters in the Spinal Deformity Study Group’s AIS radiographic measurement manual. Spine 30:1064–1069. doi: 10.1097/01.brs.0000160840.51621.6b PubMedCrossRefGoogle Scholar
  24. 24.
    de Bruijne M, Lund M, Tankó L, Pettersen PMN (2007) Quantitative vertebral morphometry using neighbor conditional shape models. Med Image Anal 11:503–512. doi: 10.1016/j.media.2007.07.004 PubMedCrossRefGoogle Scholar
  25. 25.
    Drerup B (1984) Principles of measurement of vertebral rotation from frontal projections of the pedicles. J Biomech 17:923–935. doi: 10.1016/0021-9290(84)90005-8 PubMedCrossRefGoogle Scholar
  26. 26.
    Drerup B (1985) Improvements in measuring vertebral rotation from the projections of the pedicles. J Biomech 18:369–378. doi: 10.1016/0021-9290(85)90292-1 PubMedCrossRefGoogle Scholar
  27. 27.
    Drerup B, Hierholzer E (1992) Evaluation of frontal radiographs of scoliotic spines—part I: measurement of position and orientation of vertebrae and assessment of clinical shape parameters. J Biomech 25:1357–1362. doi: 10.1016/0021-9290(92)90291-8 PubMedCrossRefGoogle Scholar
  28. 28.
    Drerup B, Hierholzer E (1992) Evaluation of frontal radiographs of scoliotic spines—part II: relations between lateral deviation, lateral tilt and axial rotation of vertebrae. J Biomech 25:1443–1450. doi: 10.1016/0021-9290(92)90057-8 PubMedCrossRefGoogle Scholar
  29. 29.
    Drerup B, Hierholzer E (1996) Assessment of scoliotic deformity from back shape asymmetry using an improved mathematical model. Clin Biomech (Bristol, Avon) 11:376–383. doi: 10.1016/0268-0033(96)00025-3 CrossRefGoogle Scholar
  30. 30.
    Dumas R, Le Bras A, Champain N, Savidan M, Mitton D, Kalifa G, Steip JP, De Guise J, Skalli W (2004) Validation of the relative 3D orientation of vertebrae reconstructed by bi-planar radiography. Med Eng Phys 26:415–422. doi: 10.1016/j.medengphy.2004.02.004 PubMedCrossRefGoogle Scholar
  31. 31.
    Dumas R, Steib JP, Mitton D, Lavaste F, Skalli W (2003) Three-dimensional quantitative segmental analysis of scoliosis corrected by the in situ contouring technique. Spine 28:1158–1162. doi: 10.1097/00007632-200306010-00014 PubMedCrossRefGoogle Scholar
  32. 32.
    Ecker M, Betz R, Trent P, Mahboubi S, Mesgarzadeh M, Bonakdapour A, Drummond D, Clancy M (1988) Computer tomography evaluation of Cotrel-Dubousset instrumentation in idiopathic scoliosis. Spine 13:1141–1144. doi: 10.1097/00007632-198810000-00015 PubMedCrossRefGoogle Scholar
  33. 33.
    Fait M, Janovec M (1970) Establishing the rotation angle in the vertebrae. Scr Med (Brno) 43:207–215Google Scholar
  34. 34.
    Gangnet N, Dumas R, Pomero V, Mitulescu A, Skalli W, Vital JM (2006) Three-dimensional spinal and pelvic alignment in an asymptomatic population. Spine 31:E507–E512. doi: 10.1097/01.brs.0000224533.19359.89 PubMedCrossRefGoogle Scholar
  35. 35.
    Giger M (2002) Computer-aided diagnosis in radiology. Acad Radiol 9:1–3. doi: 10.1016/S1076-6332(03)80289-1 PubMedCrossRefGoogle Scholar
  36. 36.
    Gille O, Champain N, Benchikh-El-Fegoun A, Vital JM, Skalli W (2007) Reliability of 3D reconstruction of the spine of mild scoliotic patients. Spine 32:568–573. doi: 10.1097/01.brs.0000256866.25747.b3 PubMedCrossRefGoogle Scholar
  37. 37.
    Göçen S, Aksu M, Baktiroğlu L, Ozcan O (1998) Evaluation of computed tomographic methods to measure vertebral rotation in adolescent idiopathic scoliosis: an intraobserver and interobserver analysis. J Spinal Disord 11:210–214PubMedGoogle Scholar
  38. 38.
    Göçen S, Havitçioglu H, Alici E (1999) A new method to measure vertebral rotation from CT scans. Eur Spine J 8:261–265. doi: 10.1007/s005860050170 PubMedCrossRefGoogle Scholar
  39. 39.
    Goh S, Tan C, Price R, Edmondston S, Song S, Davis S, Singer K (2000) Influence of age and gender on thoracic vertebral body shape and disc degeneration: an MR investigation of 169 cases. J Anat 197:647–657. doi: 10.1046/j.1469-7580.2000.19740647.x PubMedCrossRefGoogle Scholar
  40. 40.
    Gunzburg R, Gunzburg J, Wagner J, Fraser R (1991) Radiologic interpretation of lumbar vertebral rotation. Spine 16:660–664PubMedGoogle Scholar
  41. 41.
    Haughton V, Rogers B, Meyerand E, Resnick D (2002) Measuring the axial rotation of lumbar vertebrae in vivo with MR imaging. AJNR Am J Neuroradiol 23:1110–1116PubMedGoogle Scholar
  42. 42.
    Hecquet J, Legaye J, Duval-Beaupère G (1998) Access to a three-dimensional measure of vertebral axial rotation. Eur Spine J 7:206–211. doi: 10.1007/s005860050057 PubMedCrossRefGoogle Scholar
  43. 43.
    Herring J, Dawant B (2001) Automatic lumbar vertebral identification using surface-based registration. J Biomed Inform 34:74–84. doi: 10.1006/jbin.2001.1003 PubMedCrossRefGoogle Scholar
  44. 44.
    Ho E, Upadhyay S, Chan F, Hsu L, Leong J (1993) New methods of measuring vertebral rotation from computed tomographic scans: an intraobserver and interobserver study on girls with scoliosis. Spine 18:1173–1177. doi: 10.1097/00007632-199307000-00008 PubMedCrossRefGoogle Scholar
  45. 45.
    Ho E, Upadhyay S, Ferris L, Chan F, Bacon-Shone J, Hsu L, Leong J (1992) A comparative study of computed tomographic and plain radiographic methods to measure vertebral rotation in adolescent idiopathic scoliosis. Spine 17:771–774. doi: 10.1097/00007632-199207000-00008 PubMedCrossRefGoogle Scholar
  46. 46.
    Huynh T, Dansereau J, Maurais G (1997) Development of a vertebral endplate 3-D reconstruction technique. IEEE Trans Med Imaging 16:689–696. doi: 10.1109/42.640760 PubMedCrossRefGoogle Scholar
  47. 47.
    Kojima T, Kurokawa T (1992) Rotation vector, a new method for representation of 3-dimensional deformity in scoliosis. Spine 17:1296–1303PubMedCrossRefGoogle Scholar
  48. 48.
    Kouwenhoven JW, Vincken K, Bartels L, Castelein R (2006) Analysis of preexistent vertebral rotation in the normal spine. Spine 31:1467–1472. doi: 10.1097/01.brs.0000219938.14686.b3 PubMedCrossRefGoogle Scholar
  49. 49.
    Kouwenhoven JW, Bartels L, Vincken K, Viergever M, Verbout A, Delhaas T, Castelein R (2007) The relation between organ anatomy and pre-existent vertebral rotation in the normal spine: magnetic resonance imaging study in humans with situs inversus totalis. Spine 32:1123–1128. doi: 10.1097/01.brs.0000261563.75469.b0 PubMedCrossRefGoogle Scholar
  50. 50.
    Krismer M, Sterzinger W, Christian H, Frischhut B, Bauer R (1996) Axial rotation measurement of scoliotic vertebrae by means of computed tomography scans. Spine 21:576–581. doi: 10.1097/00007632-199603010-00009 PubMedCrossRefGoogle Scholar
  51. 51.
    Kuklo T, Potter B, Lenke L (2005) Vertebral rotation and thoracic torsion in adolescent idiopathic scoliosis: what is the best radiographic correlate? J Spinal Disord Tech 18:139–147. doi: 10.1097/01.bsd.0000159033.89623.bc PubMedCrossRefGoogle Scholar
  52. 52.
    Kuklo T, Potter B, O’Brien M, Schroeder T, Lenke L, Polly D, Group SDS (2005) Reliability analysis for digital adolescent idiopathic scoliosis measurements. J Spinal Disord Tech 18:152–159. doi: 10.1097/01.bsd.0000148094.75219.b0 PubMedCrossRefGoogle Scholar
  53. 53.
    Kuklo T, Potter B, Polly D, O’Brien M, Schroeder T, Lenke L (2005) Reliability analysis for manual adolescent idiopathic scoliosis measurements. Spine 30:444–454. doi: 10.1097/01.brs.0000153702.99342.9c PubMedCrossRefGoogle Scholar
  54. 54.
    Labelle H, Dansereau J, Bellefleur C, Jéquier J (1995) Variability of geometric measurements from three-dimensional reconstructions of scoliotic spines and rib cages. Eur Spine J 4:88–94. doi: 10.1007/BF00278918 PubMedCrossRefGoogle Scholar
  55. 55.
    Lee SM, Suk SI, Chung ER (2004) Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine 29:343–349. doi: 10.1097/01.BRS.0000109991.88149.19 PubMedCrossRefGoogle Scholar
  56. 56.
    Liljenqvist U, Link T, Halm H (2000) Morphometric analysis of thoracic and lumbar vertebrae in idiopathic scoliosis. Spine 25:1247–1253. doi: 10.1097/00007632-200005150-00008 PubMedCrossRefGoogle Scholar
  57. 57.
    Marchesi D, Transfeldt E, Bradford D, Heithoff K (1992) Changes in vertebral rotation after Harrington and Luque instrumentation for idiopathic scoliosis. Spine 17:775–780PubMedGoogle Scholar
  58. 58.
    Masharawi Y, Rothschild B, Dar G, Peleg S, Robinson D, Been EIH (2004) Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis. Spine 29:1755–1763. doi: 10.1097/01.BRS.0000134575.04084.EF PubMedCrossRefGoogle Scholar
  59. 59.
    Matteri R, Pope M, Frymoyer J (1976) A biplane radiographic method of determining vertebral rotation in postmortem specimens. Clin Orthop Relat Res 116:95–98PubMedGoogle Scholar
  60. 60.
    Mehta M (1973) Radiographic estimation of vertebral rotation in scoliosis. J Bone Jt Surg Br 55:513–520Google Scholar
  61. 61.
    Mitton D, Landry C, Véron S, Skalli W, Lavaste F, De Guise J (2000) 3D reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Med Biol Eng Comput 38:133–139. doi: 10.1007/BF02344767 PubMedCrossRefGoogle Scholar
  62. 62.
    Mitulescu A, Semaan I, De Guise J, Leborgne P, Adamsbaum C, Skalli W (2001) Validation of the non-stereo corresponding points stereoradiographic 3D reconstruction technique. Med Biol Eng Comput 39:152–158. doi: 10.1007/BF02344797 PubMedCrossRefGoogle Scholar
  63. 63.
    Monji J, Koreska J (unpublished) Analysis of spine rotation: a new accurate method for clinical useGoogle Scholar
  64. 64.
    Nash C, Moe J (1969) A study of vertebral rotation. J Bone Jt Surg Am 51:223–229Google Scholar
  65. 65.
    Nojiri K, Matsumoto M, Chiba K, Toyama Y (2005) Morphometric analysis of the thoracic and lumbar spine in Japanese on the use of pedicle screws. Surg Radiol Anat 27:123–128. doi: 10.1007/s00276-004-0305-4 PubMedCrossRefGoogle Scholar
  66. 66.
    Oda I, Abumi K, Cunningham B, Kaneda K, McAfee P (2002) An in vitro human cadaveric study investigating the biomechanical properties of the thoracic spine. Spine 27:E64–E70. doi: 10.1097/00007632-200202010-00007 PubMedCrossRefGoogle Scholar
  67. 67.
    Omeroğlu H, Ozekin O, Biçimoğlu A (1996) Measurement of vertebral rotation in idiopathic scoliosis using the Perdriolle torsionmeter: a clinical study on intraobserver and interobserver error. Eur Spine J 5:167–171. doi: 10.1007/BF00395508 PubMedCrossRefGoogle Scholar
  68. 68.
    Panigrahy S, Caruthers S, Krejza J, Barnes P (2000) Registration of three-dimensional MR and CT studies of the cervical spine. AJNR Am J Neuroradiol 21:282–289PubMedGoogle Scholar
  69. 69.
    Parent S, Labelle H, Skalli W, Latimer B, de Guise J (2002) Morphometric analysis of anatomic scoliotic specimens. Spine 27:2305–2311. doi: 10.1097/00007632-200211010-00002 PubMedCrossRefGoogle Scholar
  70. 70.
    Pearcy M, Tibrewal S (1984) Axial rotation and lateral bending in the normal lumbar spine measured by three-dimensional radiography. Spine 9:582–587. doi: 10.1097/00007632-198409000-00008 PubMedCrossRefGoogle Scholar
  71. 71.
    Perdriolle R, Vidal J (1985) Thoracic idiopathic scoliosis curve evolution and prognosis. Spine 10:785–791. doi: 10.1097/00007632-198511000-00001 PubMedCrossRefGoogle Scholar
  72. 72.
    Petit Y, Aubin CE, Labelle H (2004) Spinal shape changes resulting from scoliotic spine surgical instrumentation expressed as intervertebral rotations and centers of rotation. J Biomech 37:173–180. doi: 10.1016/S0021-9290(03)00310-5 PubMedCrossRefGoogle Scholar
  73. 73.
    Pomero V, Mitton D, Laporte S, De Guise J, Skalli W (2004) Fast accurate stereoradiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clin Biomech (Bristol, Avon) 19:240–247. doi: 10.1016/j.clinbiomech.2003.11.014 CrossRefGoogle Scholar
  74. 74.
    Richards B (1992) Measurement error in assessment of vertebral rotation using the Perdriolle torsionmeter. Spine 17:513–517PubMedGoogle Scholar
  75. 75.
    Rogers B, Haughton V, Arfanakis K, Meyerand E (2002) Application of image registration to measurement of intervertebral rotation in the lumbar spine. Magn Reson Med 48:1072–1075. doi: 10.1002/mrm.10319 PubMedCrossRefGoogle Scholar
  76. 76.
    Rogers B, Wiese S, Blankenbaker D, Meyerand E, Haughton V (2005) Accuracy of an automated method to measure rotations of vertebrae from computerized tomography data. Spine 30:694–696. doi: 10.1097/01.brs.0000155413.73518.b0 PubMedCrossRefGoogle Scholar
  77. 77.
    Russell G, Raso V, Mclvor J, Hill D (1990) A comparison of four computerized methods for measuring vertebral rotation. Spine 15:24–27. doi: 10.1097/00007632-199001000-00007 PubMedCrossRefGoogle Scholar
  78. 78.
    Sevastik B, Xiong B, Sevastik J, Hedlund R, Suliman I (1995) Vertebral rotation and pedicle length asymmetry in the normal adult spine. Eur Spine J 4:95–97. doi: 10.1007/BF00278919 PubMedCrossRefGoogle Scholar
  79. 79.
    Skalli W, Lavaste F, Descrimes JL (1995) Quantification of three-dimensional vertebral rotations in scoliosis: what are the true values? Spine 20:546–553. doi: 10.1097/00007632-199503010-00008 PubMedCrossRefGoogle Scholar
  80. 80.
    Smyth P, Taylor C, Adams J (1997) Automatic measurement of vertebral shape using active shape models. Image Vis Comput 15:575–581. doi: 10.1016/S0262-8856(97)00006-1 CrossRefGoogle Scholar
  81. 81.
    Stokes I (1989) Axial rotation component of thoracic scoliosis. J Orthop Res 7:702–708. doi: 10.1002/jor.1100070511 PubMedCrossRefGoogle Scholar
  82. 82.
    Stokes I (1994) Three-dimensional terminology of spinal deformity: a report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine 19:236–248PubMedGoogle Scholar
  83. 83.
    Stokes I (1997) Analysis of symmetry of vertebral body loading consequent to lateral spinal curvature. Spine 22:2495–2503. doi: 10.1097/00007632-199711010-00006 PubMedCrossRefGoogle Scholar
  84. 84.
    Stokes I, Aronsson D (2001) Disc and vertebral wedging in patients with progressive scoliosis. J Spinal Disord Tech 14:317–322. doi: 10.1097/00002517-200108000-00006 CrossRefGoogle Scholar
  85. 85.
    Stokes I, Bigalow L, Moreland M (1986) Measurement of axial rotation of vertebrae in scoliosis. Spine 11:213–218. doi: 10.1097/00007632-198604000-00006 PubMedCrossRefGoogle Scholar
  86. 86.
    Stokes I, Bigalow L, Moreland M (1987) Three-dimensional spinal curvature in idiopathic scoliosis. J Orthop Res 5:102–113. doi: 10.1002/jor.1100050113 PubMedCrossRefGoogle Scholar
  87. 87.
    Tamura Y, Sugano N, Sasama T, Sato Y, Tamura S, Yonenobu K, Yoshikawa HTO (2005) Surface-based registration accuracy of CT-based image-guided spine surgery. Eur Spine J 14:291–297. doi: 10.1007/s00586-004-0797-y PubMedCrossRefGoogle Scholar
  88. 88.
    Tan S, Teo E, Chua H (2002) Quantitative three-dimensional anatomy of lumbar vertebrae in Singaporean Asians. Eur Spine J 11:152–158. doi: 10.1007/s00586-001-0365-7 PubMedCrossRefGoogle Scholar
  89. 89.
    Tan S, Teo E, Chua H (2004) Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae of Chinese Singaporeans. Eur Spine J 13:137–146. doi: 10.1007/s00586-003-0586-z PubMedCrossRefGoogle Scholar
  90. 90.
    Vrtovec T, Likar B, Pernuš F (2005) Automated curved planar reformation of 3D spine images. Phys Med Biol 50:4527–4540. doi: 10.1088/0031-9155/50/19/007 PubMedCrossRefGoogle Scholar
  91. 91.
    Vrtovec T, Ourselin S, Lavier G, Likar B, Pernuš F (2007) Automated generation of curved planar reformations from MR images of the spine. Phys Med Biol 52:2865–2878. doi: 10.1088/0031-9155/52/10/015 PubMedCrossRefGoogle Scholar
  92. 92.
    Vrtovec T, Pernuš F, Likar B (2008) A symmetry-based method for the determination of vertebral rotation in 3D. In: Metaxas D, Axel L, Davies B (eds) Lecture Notes in Computer Science (LNCS): proceedings of the 11th medical image computing and computer-assisted intervention–MICCAI 2008, Springer, New York, NY, USA, vol 5241, pp 942–950Google Scholar
  93. 93.
    Vrtovec T, Pernuš F, Likar B A review of methods for quantitative evaluation of spinal curvature. Eur Spine J. doi: 10.1007/s00586-009-0913-0
  94. 94.
    Weiss HR (1995) Measurement of vertebral rotation: Perdriolle versus Raimondi. Eur Spine J 4:34–38. doi: 10.1007/BF00298416 PubMedCrossRefGoogle Scholar
  95. 95.
    Wever D, Veldhuizen A, Klein J, Webb P, Nijenbanning G, Cool J, Horn J (1999) A biomechanical analysis of the vertebral and rib deformities in structural scoliosis. Eur Spine J 8:252–260. doi: 10.1007/s005860050169 PubMedCrossRefGoogle Scholar
  96. 96.
    Xiong B, Sevastik J, Hedlund R, Sevastik B (1993) Segmental vertebral rotation in early scoliosis. Eur Spine J 2:37–41. doi: 10.1007/BF00301053 CrossRefPubMedGoogle Scholar
  97. 97.
    Yao J OConnor S, Summers R (2006) Automated spinal column extraction and partitioning. In: proceedings of the 3rd IEEE international symposium on biomedical imaging: from nano to macro–ISBI 2006. IEEE, Arlington, VA, USA, pp 390–393Google Scholar
  98. 98.
    Yazici M, Acaroglu E, Alanay A, Deviren V, Cila A, Surat A (2001) Measurement of vertebral rotation in standing versus supine position in adolescent idiopathic scoliosis. J Pediatr Orthop 21:252–256. doi: 10.1097/00004694-200103000-00025 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Tomaž Vrtovec
    • 1
  • Franjo Pernuš
    • 1
  • Boštjan Likar
    • 1
  1. 1.Laboratory of Imaging Technologies, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations