European Spine Journal

, Volume 18, Issue 5, pp 593–607 | Cite as

A review of methods for quantitative evaluation of spinal curvature

  • Tomaž Vrtovec
  • Franjo Pernuš
  • Boštjan Likar
Review Article


The aim of this paper is to provide a complete overview of the existing methods for quantitative evaluation of spinal curvature from medical images, and to summarize the relevant publications, which may not only assist in the introduction of other researchers to the field, but also be a valuable resource for studying the existing methods or developing new methods and evaluation strategies. Key evaluation issues and future considerations, supported by the results of the overview, are also discussed.


Spine Spinal curvature 2D images 3D images Review of methods 



This work has been supported by the Ministry of Higher Education, Science and Technology, Slovenia, under grants P2–0232, L2–7381, L2–9758, and J2–0716.

Conflict of interest statement

None of the authors has any potential conflict of interest.


  1. 1.
    Adam C, Izatt M, Harvey J, Askin G (2005) Variability in Cobb angle measurements using reformatted computerized tomography scans. Spine 30:1664–1669. doi: 10.1097/01.brs.0000169449.68870.f8 PubMedCrossRefGoogle Scholar
  2. 2.
    Alanay A, Pekmezci M, Karaeminogullari O, Acaroglu E, Yazici M, Cil A, Pijnenburg B, Genc Y, Oner F (2007) Radiographic measurement of the sagittal plane deformity in patients with osteoporotic spinal fractures evaluation of intrinsic error. Eur Spine J 16:2126–2132. doi: 10.1007/s00586-007-0474-z PubMedCrossRefGoogle Scholar
  3. 3.
    Allen S, Parent E, Khorasani M, Hill D, Lou E, Raso J (2008) Validity and reliability of active shape models for the estimation of Cobb angle in patients with adolescent idiopathic scoliosis. J Digit Imaging 21:208–218. doi: 10.1007/s10278-007-9026-7 PubMedCrossRefGoogle Scholar
  4. 4.
    André B, Dansereau J, Labelle H (1992) Effect of radiographic landmark identification errors on the accuracy of three-dimensional reconstruction of the human spine. Med Biol Eng Comput 30:569–575. doi: 10.1007/BF02446787 PubMedCrossRefGoogle Scholar
  5. 5.
    André B, Dansereau J, Labelle H (1994) Optimized vertical stereo base radiographic setup for the clinical three-dimensional reconstruction of the human spine. J Biomech 27:1023–1035. doi: 10.1016/0021-9290(94)90219-4 PubMedCrossRefGoogle Scholar
  6. 6.
    Aubin C, Dansereau J, Parent F, Labelle H, de Guise J (1997) Morphometric evaluations of personalised 3D reconstructions and geometric models of the human spine. Med Biol Eng Comput 35:611–618. doi: 10.1007/BF02510968 PubMedCrossRefGoogle Scholar
  7. 7.
    Beauchamp M, Labelle H, Grimard G, Stanciu C, Poitras B, Dansereau J (1993) Diurnal variation of Cobb angle measurement in adolescent idiopathic scoliosis. Spine 18:1581–1583. doi: 10.1097/00007632-199309000-00002 PubMedCrossRefGoogle Scholar
  8. 8.
    Beekman C, Hall V (1979) Variability of scoliosis measurement from spinal roentgenograms. Phys Ther 59:764–765PubMedGoogle Scholar
  9. 9.
    Bernhardt M, Bridwell K (1989) Segmental analysis of the sagittal plane alignment of the normal thoracic and lumbar spines and thoracolumbar junction. Spine 14:717–721. doi: 10.1097/00007632-198907000-00012 PubMedCrossRefGoogle Scholar
  10. 10.
    Berthonnaud E, Dimnet J (2007) Analysis of structural features of deformed spines in frontal and sagittal projections. Comput Med Imaging Graph 31:9–16. doi: 10.1016/j.compmedimag.2006.09.016 PubMedCrossRefGoogle Scholar
  11. 11.
    Briggs A, Wrigley T, Tully E, Adams P, Greig A, Bennell K (2007) Radiographic measures of thoracic kyphosis in osteoporosis: Cobb and vertebral centroid angles. Skeletal Radiol 36:761–767. doi: 10.1007/s00256-007-0284-8 PubMedCrossRefGoogle Scholar
  12. 12.
    Brown R, Burstein A, Nash C, Schock C (1976) Spinal analysis using a three-dimensional radiographic technique. J Biomech 9:355–365. doi: 10.1016/0021-9290(76)90113-5 PubMedCrossRefGoogle Scholar
  13. 13.
    Carman D, Browne R, Birch J (1990) Measurement of scoliosis and kyphosis radiographs: intraobserver and interobserver variation. J Bone Joint Surg Am 72:328–333PubMedGoogle Scholar
  14. 14.
    Chen YL (1999) Vertebral centroid measurement of lumbar lordosis compared with the Cobb technique. Spine 24:1786–1790. doi: 10.1097/00007632-199909010-00007 PubMedCrossRefGoogle Scholar
  15. 15.
    Chen YL, Chen WJ, Chiou WK (2007) An alternative method for measuring scoliosis curvature. Orthopedics 30:828–831PubMedGoogle Scholar
  16. 16.
    Chernukha K, Daffner R, Reigel D (1998) Lumbar lordosis measurement: a new method versus Cobb technique. Spine 23:74–79. doi: 10.1097/00007632-199801010-00016 PubMedCrossRefGoogle Scholar
  17. 17.
    Cheung J, Wever D, Veldhuizen A, Klein J, Verdonck B, Nijlunsing R, Cool J, Van Horn J (2002) The reliability of quantitative analysis on digital images of the scoliotic spine. Eur Spine J 11:535–542. doi: 10.1007/s00586-001-0381-7 PubMedCrossRefGoogle Scholar
  18. 18.
    Chockalingam N, Dangerfield P, Giakas G, Cochrane T, Dorgan J (2002) Computer-assisted Cobb measurement of scoliosis. Eur Spine J 11:353–357. doi: 10.1007/s00586-002-0386-x PubMedCrossRefGoogle Scholar
  19. 19.
    Cobb J (1948) Outline for the study of scoliosis. Am Acad Orthop Surg Instr Course Lect 5:261–275Google Scholar
  20. 20.
    Côté P, Cassidy J, Yong-Hing K, Sibley J, Loewy J (1997) Apophysial joint degeneration, disc degeneration, and sagittal curve of the cervical spine: can they be measured reliably on radiographs? Spine 22:859–864. doi: 10.1097/00007632-199704150-00007 PubMedCrossRefGoogle Scholar
  21. 21.
    De Carvalho A, Vialle R, Thomsen L, Amzallag J, Cluzel G, Pointe H, Mary P (2007) Reliability analysis for manual measurement of coronal plane deformity in adolescent scoliosis. Are 30 × 90 cm plain films better than digitized small films? Eur Spine J 16:1615–1620. doi: 10.1007/s00586-007-0437-4 Google Scholar
  22. 22.
    De Smet A, Goin J, Asher M, Scheuch H (1982) A clinical study of the differences between the scoliotic angles measured on posteroanterior and anteroposterior radiographs. J Bone Joint Surg Am 64:489–493Google Scholar
  23. 23.
    De Smet A, Tarlton M, Cook L, Fritz S, Dwyer S (1980) A radiographic method for three-dimensional analysis of spinal configuration. Radiology 137:343–348PubMedGoogle Scholar
  24. 24.
    Diab K, Sevastik J, Hedlund R, Suliman I (1995) Accuracy and applicability of measurement of the scoliotic angle at the frontal plane by Cobb’s method, by Ferguson’s method and by a new method. Eur Spine J 4:291–295. doi: 10.1007/BF00301037 PubMedCrossRefGoogle Scholar
  25. 25.
    Dimar JII, Carreon L, Labelle H, Djurasovic M, Weidenbaum M, Brown C, Roussouly P (2008) Intra- and inter-observer reliability of determining radiographic sagittal parameters of the spine and pelvis using a manual and a computer-assisted methods. Eur Spine J 17:1373–1379. doi: 10.1007/s00586-008-0755-1 PubMedCrossRefGoogle Scholar
  26. 26.
    Drerup B, Hierholzer E (1992) Evaluation of frontal radiographs of scoliotic spines—part I: measurement of position and orientation of vertebrae and assessment of clinical shape parameters. J Biomech 25:1357–1362. doi: 10.1016/0021-9290(92)90291-8 PubMedCrossRefGoogle Scholar
  27. 27.
    Drerup B, Hierholzer E (1996) Assessment of scoliotic deformity from back shape asymmetry using an improved mathematical model. Clin Biomech (Bristol, Avon) 11:376–383. doi: 10.1016/0268-0033(96)00025-3
  28. 28.
    Dumas R, Blanchard B, Carlier R, de Loubresse C, Le Huec JC, Marty C, Moinard M, Vital JM (2008) A semiautomated method using interpolation and optimisation for the 3D reconstruction of the spine from bi-planar radiography: a precision and accuracy study. Med Biol Eng Comput 46:85–92. doi: 10.1007/s11517-007-0253-3 PubMedCrossRefGoogle Scholar
  29. 29.
    Dutton K, Jones T, Slinger B, Scull E, O’Connor J (1989) Reliability of the Cobb angle index derived by traditional and computer assisted methods. Australas Phys Eng Sci Med 12:16–23PubMedGoogle Scholar
  30. 30.
    Facanha-Filho F, Winter R, Lonstein J, Koop S, Novacheck T, L’Heureux E, Noren C (2001) Measurement accuracy in congenital scoliosis. J Bone Joint Surg Am 83:42–45PubMedGoogle Scholar
  31. 31.
    Ferguson A (1930) The study and treatment of scoliosis. South Med J 23:116–120Google Scholar
  32. 32.
    Fon G, Pitt M, Thies A (1980) Thoracic kyphosis: range in normal subjects. AJR Am J Roentgenol 134:979–983PubMedGoogle Scholar
  33. 33.
    Goh S, Price R, Leedman P, Singer K (2000) A comparison of three methods for measuring thoracic kyphosis: implications for clinical studies. Rheumatology 39:310–315. doi: 10.1093/rheumatology/39.3.310 PubMedCrossRefGoogle Scholar
  34. 34.
    Goldberg M, Poitras B, Mayo N, Labelle H, Bourassa R, Cloutier R (1988) Observer variation in assessing spinal curvature and skeletal development in adolescent idiopathic scoliosis. Spine 13:1371–1377. doi: 10.1097/00007632-198812000-00008 PubMedCrossRefGoogle Scholar
  35. 35.
    Gore D, Sepic S, Gardner G (1986) Roentgenographic findings of the cervical spine in asymptomatic people. Spine 11:521–524. doi: 10.1097/00007632-198607000-00003 PubMedCrossRefGoogle Scholar
  36. 36.
    Greenspan A, Pugh J, Norman A, Norman R (1978) Scoliotic index: a comparative evaluation of methods for the measurement of scoliosis. B Hosp Jt Dis Ort 39:117–125Google Scholar
  37. 37.
    Gross C, Gross M, Kuschner S (1983) Error analysis of scoliosis curvature measurement. B Hosp Jt Dis Ort 43:171–177Google Scholar
  38. 38.
    Gstoettner M, Sekyra K, Walochnik N, Winter P, Wachter R, Bach C (2007) Inter- and intra-observer reliability assessment of the Cobb angle: manual versus digital measurement tools. Eur Spine J 16:1587–1592. doi: 10.1007/s00586-007-0401-3 PubMedCrossRefGoogle Scholar
  39. 39.
    Hardacker J, Shuford R, Capicotto P, Pryor P (1997) Radiographic standing cervical segmental alignment in adult volunteers without neck symptoms. Spine 22:1472–1480. doi: 10.1097/00007632-199707010-00009 PubMedCrossRefGoogle Scholar
  40. 40.
    Harrison DE, Cailliet R, Harrison DD, Janik T, Holland B (2001) Reliability of centroid, Cobb, and Harrison posterior tangent methods: which to choose for analysis of thoracic kyphosis. Spine 26:E227–E234. doi: 10.1097/00007632-200106010-00002 PubMedCrossRefGoogle Scholar
  41. 41.
    Harrison DD, Cailliet R, Janik T, Troyanovich S, Harrison DE, Holland B (1998) Elliptical modeling of the sagittal lumbar lordosis and segmental rotation angles as a method to discriminate between normal and low back pain subjects. J Spinal Disord 11:430–439. doi: 10.1097/00002517-199810000-00010 PubMedCrossRefGoogle Scholar
  42. 42.
    Harrison DE, Harrison DD, Cailliet R, Janik T, Holland B (2001) Radiographic analysis of lumbar lordosis: centroid, Cobb, TRALL, and Harrison posterior tangent methods. Spine 26:E235–E242. doi: 10.1097/00007632-200106010-00003 PubMedCrossRefGoogle Scholar
  43. 43.
    Harrison DE, Harrison DD, Cailliet R, Troyanovich S, Janik T, Holland B (2000) Cobb method or Harrison posterior tangent method: which to choose for lateral cervical radiographic analysis. Spine 25:2072–2078. doi: 10.1097/00007632-200008150-00011 PubMedCrossRefGoogle Scholar
  44. 44.
    Harrison DD, Harrison DE, Janik T, Cailliet R, Ferrantelli J, Haas J, Holland B (2004) Modeling of the sagittal cervical spine as a method to discriminate hypolordosis: results of elliptical and circular modeling in 72 asymptomatic subjects, 52 acute neck pain subjects, and 70 chronic neck pain subjects. Spine 29:2485–2492. doi: 10.1097/01.brs.0000144449.90741.7c PubMedCrossRefGoogle Scholar
  45. 45.
    Harrison DE, Janik T, Harrison DD, Cailliet R, Harmon S (2002) Can the thoracic kyphosis be modeled with a simple geometric shape? The results of circular and elliptical modeling in 80 asymptomatic patients. J Spinal Disord 15:213–220Google Scholar
  46. 46.
    Harrison DD, Janik T, Troyanovich S, Holland B (1996) Comparisons of lordotic cervical spine curvatures to a theoretical ideal model of the static sagittal cervical spine. Spine 21:667–675. doi: 10.1097/00007632-199603150-00002 PubMedCrossRefGoogle Scholar
  47. 47.
    Hicks G, George S, Nevitt M, Cauley J, Vogt M (2006) Measurement of lumbar lordosis: inter-rater reliability, minimum detectable change and longitudinal variation. J Spinal Disord 19:501–506. doi: 10.1097/ CrossRefGoogle Scholar
  48. 48.
    Huysmans T, Haex B, Van Audekercke R, Vander Sloten J, Van Der Perre G (2004) Three-dimensional mathematical reconstruction of the spinal shape, based on active contours. J Biomech 37:1793–1798. doi: 10.1016/j.jbiomech.2004.01.020 PubMedCrossRefGoogle Scholar
  49. 49.
    Ishihara A (1968) Roentgenographic studies on the normal pattern of the cervical curvature. Nippon Seikeigeka Gakkai Zasshi 42:1033–1044. (in Japanese)Google Scholar
  50. 50.
    Janik T, Harrison DD, Cailliet R, Troyanovich S, Harrison DE (1998) Can the sagittal lumbar curvature be closely approximated by an ellipse? J Orthop Res 16:766–770. doi: 10.1002/jor.1100160620 PubMedCrossRefGoogle Scholar
  51. 51.
    Jeffries B, Tarlton M, De Smet A, Dwyer S, Brower A (1980) Computerized measurement and analysis of scoliosis: a more accurate representation of the shape of the curve. Radiology 134:381–385PubMedGoogle Scholar
  52. 52.
    Kaminsky J, Klinge P, Rodt T, Bokemeyer M, Luedemann W, Samii M (2004) Specially adapted interactive tools for an improved 3D-segmentation of the spine. Comput Med Imaging Graph 28:119–127. doi: 10.1016/j.compmedimag.2003.12.001 PubMedCrossRefGoogle Scholar
  53. 53.
    Korovessis P, Stamatakis M, Baikousis A (1998) Reciprocal angulation of vertebral bodies in the sagittal plane in an asymptomatic Greek population. Spine 23:700–704. doi: 10.1097/00007632-199803150-00010 PubMedCrossRefGoogle Scholar
  54. 54.
    Labelle H, Dansereau J, Bellefleur C, Jéquier J (1995) Variability of geometric measurements from three-dimensional reconstructions of scoliotic spines and rib cages. Eur Spine J 4:88–94. doi: 10.1007/BF00278918 PubMedCrossRefGoogle Scholar
  55. 55.
    Loder R, Spiegel D, Gutknecht S, Kleist K, Ly T, Mehbod A (2004) The assessment of intraobserver and interobserver error in the measurement of noncongenital scoliosis in children less or equal 10 years of age. Spine 29:2548–2553. doi: 10.1097/01.brs.0000144828.72721.d8 PubMedCrossRefGoogle Scholar
  56. 56.
    Loder R, Urquhart A, Steen H, Graziano G, Hensinger R, Schlesinger A, Schork M, Shyr Y (1995) Variability in Cobb angle measurements in children with congenital scoliosis. J Bone Joint Surg Br 77:768–770PubMedGoogle Scholar
  57. 57.
    Mac-Thiong JM, Labelle H, Charlebois M, Huot MP, de Guise J (2003) Sagittal plane analysis of the spine and pelvis in adolescent idiopathic scoliosis according to the coronal curve type. Spine 28:1404–1409. doi: 10.1097/00007632-200307010-00010 PubMedCrossRefGoogle Scholar
  58. 58.
    Mitton D, Landry C, Véron S, Skalli W, Lavaste F, De Guise J (2000) 3D reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Med Biol Eng Comput 38:133–139. doi: 10.1007/BF02344767 PubMedCrossRefGoogle Scholar
  59. 59.
    Mitulescu A, Semaan I, De Guise J, Leborgne P, Adamsbaum C, Skalli W (2001) Validation of the non-stereo corresponding points stereoradiographic 3D reconstruction technique. Med Biol Eng Comput 39:152–158. doi: 10.1007/BF02344797 PubMedCrossRefGoogle Scholar
  60. 60.
    Mok J, Berven S, Diab M, Hackbarth M, Hu S, Deviren V (2008) Comparison of observer variation in conventional and three digital radiographic methods used in the evaluation of patients with adolescent idiopathic scoliosis. Spine 33:681–686. doi: 10.1097/BRS.0b013e318178e67f PubMedCrossRefGoogle Scholar
  61. 61.
    Morrissy R, Goldsmith G, Hall E, Kehl D, Cowie G (1990) Measurement of the Cobb angle on radiographs of patients who have scoliosis: evaluation of intrinsic error. J Bone Jt Surg Am 72:320–327Google Scholar
  62. 62.
    Oda M, Rauh S, Gregory P, Silverman F, Bleck E (1982) The significance of roentgenographic measurement in scoliosis. J Pediatr Orthop 2:378–382PubMedGoogle Scholar
  63. 63.
    Ohara A, Miyamoto K, Naganawa T, Matsumoto K, Shimizu K (2006) Reliabilities of and correlations among five standard methods of assessing the sagittal alignment of the cervical spine. Spine 31:2585–2591. doi: 10.1097/01.brs.0000240656.79060.18 PubMedCrossRefGoogle Scholar
  64. 64.
    Patwardhan A, Rimkus A, Gavin T, Bueche M, Meade K, Bielski R, Ibrahim K (1996) Geometric analysis of coronal decompensation in idiopathic scoliosis. Spine 21:1192–1200. doi: 10.1097/00007632-199605150-00011 PubMedCrossRefGoogle Scholar
  65. 65.
    Pearcy M, Whittle M (1982) Movements of the lumbar spine measured by three-dimensional X-ray analysis. J Biomed Eng 4:107–112. doi: 10.1016/0141-5425(82)90070-X PubMedCrossRefGoogle Scholar
  66. 66.
    Peng Z, Zhong J WeeW, Lee JH (2005) Automated vertebra detection and segmentation from the whole spine MR images. In: Zhang Y, Xu L, Roux C, Zhuang T, Tamura T, Galiana H (eds), Proceedings of the 27th annual international conference of the engineering in medicine and biology society (EMBS)—EMBC 2005. IEEE, Shanghai, China, pp 2527–2530Google Scholar
  67. 67.
    Perdriolle R, Le Borgne P, Dansereau J, De Guise J, Labelle H (2001) Idiopathic scoliosis in three dimensions: a succession of two-dimensional deformities? Spine 26:2719–2726. doi: 10.1097/00007632-200112150-00019 PubMedCrossRefGoogle Scholar
  68. 68.
    Pinel-Giroux FM, Mac-Thiong JM, de Guise J, Berthonnaud E, Labelle H (2006) Computerized assessment of sagittal curvatures of the spine: comparison between Cobb and tangent circles techniques. J Spinal Disord Tech 19:507–512. doi: 10.1097/01.bsd.0000211206.15997.dd PubMedCrossRefGoogle Scholar
  69. 69.
    Polly D, Kilkelly F, McHale K, Asplund L, Mulligan M, Chang A (1996) Measurement of lumbar lordosis: evaluation of intraobserver, interobserver, and technique variability. Spine 21:1530–1535. doi: 10.1097/00007632-199607010-00008 PubMedCrossRefGoogle Scholar
  70. 70.
    Poncet P, Dansereau J, Labelle H (2001) Geometric torsion in idiopathic scoliosis: three-dimensional analysis and proposal for a new classification. Spine 26:2235–2243. doi: 10.1097/00007632-200110150-00015 PubMedCrossRefGoogle Scholar
  71. 71.
    Poncet P, Trochu F, Dansereau J (1999) Curvilinear three-dimensional modeling of spinal curves with dual kriging. Comput Methods Biomech Biomed Eng 2:295–308. doi: 10.1080/10255849908907994 CrossRefGoogle Scholar
  72. 72.
    Prince R, Devine A, Dick I (2007) The clinical utility of measured kyphosis as a predictor of the presence of vertebral deformities. Osteoporos Int 18:621–627. doi: 10.1007/s00198-006-0289-5 PubMedCrossRefGoogle Scholar
  73. 73.
    Pruijs J, Hageman M, Keessen W, van der Meer R, van Wieringen J (1994) Variation in Cobb angle measurements in scoliosis. Skeletal Radiol 23:517–520. doi: 10.1007/BF00223081 PubMedCrossRefGoogle Scholar
  74. 74.
    Rab G, Chao E (1977) Verification of roentgenographic landmarks in the lumbar spine. Spine 2:287–293. doi: 10.1097/00007632-197712000-00008 CrossRefGoogle Scholar
  75. 75.
    Rajnics P, Pomero V, Templier A, Lavaste F, Illes T (2001) Computer-assisted assessment of spinal sagittal plane radiographs. J Spinal Disord Tech 14:135–142. doi: 10.1097/00002517-200104000-00008 CrossRefGoogle Scholar
  76. 76.
    Rosenfeldt M, Harding I, Hauptfleisch J, Fairbank J (2005) A comparison of traditional protractor versus Oxford Cobbometer radiographic measurement: intraobserver measurement variability for Cobb angles. Spine 30:440–443. doi: 10.1097/01.brs.0000153401.78638.cb PubMedCrossRefGoogle Scholar
  77. 77.
    Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine 30:346–353. doi: 10.1097/01.brs.0000152379.54463.65 PubMedCrossRefGoogle Scholar
  78. 78.
    Saraste H, Ostman A (1986) Stereophotogrammetry in the evaluation of the treatment of scoliosis. Int Orthop 10:63–67PubMedGoogle Scholar
  79. 79.
    79. Scholten P, Veldhuizen A (1987) Analysis of Cobb angle measurements in scoliosis. Clin Biomech (Bristol, Avon) 2:7–13. doi: 10.1016/0268-0033(87)90039-8
  80. 80.
    Schuler T, Subach B, Branch C, Foley K, Burkus J, Lumbar Spine Study Group (2004) Segmental lumbar lordosis: manual versus computer-assisted measurement using seven different techniques. J Spinal Disord Tech 17:372–379. doi: 10.1097/01.bsd.0000109836.59382.47 PubMedCrossRefGoogle Scholar
  81. 81.
    Shea K, Stevens P, Nelson M, Smith J, Masters K, Yandow S (1998) A comparison of manual versus computer-assisted radiographic measurement: Intraobserver measurement variability for Cobb angles. Spine 23:551–555. doi: 10.1097/00007632-199803010-00007 PubMedCrossRefGoogle Scholar
  82. 82.
    Silber J, Lipetz J, Hayes V, Lonner B (2004) Measurement variability in the assessment of sagittal alignment of the cervical spine: a comparison of the Gore and Cobb methods. J Spinal Disord Tech 17:301–305. doi: 10.1097/01.bsd.0000095824.98982.53 PubMedCrossRefGoogle Scholar
  83. 83.
    Singer K, Edmondston S, Day R, Breidahl W (1994) Computer-assisted curvature assessment and Cobb angle determination of the thoracic kyphosis: an in vivo and in vitro comparison. Spine 19:1381–1384PubMedCrossRefGoogle Scholar
  84. 84.
    Singer K, Jones T, Breidahl P (1990) A comparison of radiographic and computer-assisted measurements of thoracic and thoracolumbar sagittal curvature. Skeletal Radiol 19:21–26. doi: 10.1007/BF00197923 PubMedCrossRefGoogle Scholar
  85. 85.
    Stagnara P, De Mauroy J, Dran G, Gonon G, Costanzo G, Dimnet J, Pasquet A (1982) Reciprocal angulation of vertebral bodies in a sagittal plane: approach to references for the evaluation of kyphosis and lordosis. Spine 7:335–342. doi: 10.1097/00007632-198207000-00003 PubMedCrossRefGoogle Scholar
  86. 86.
    Stokes I (1994) Three-dimensional terminology of spinal deformity: a report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine 19:236–248PubMedCrossRefGoogle Scholar
  87. 87.
    Stokes I (1998) Point of view: lumbar lordosis measurement: a new method versus Cobb technique. Spine 23:79–80. doi: 10.1097/00007632-199801010-00017 CrossRefGoogle Scholar
  88. 88.
    Stokes I, Aronson D, Ronchetti P, Labelle H, Dansereau J (1993) Reexamination of the Cobb and Ferguson angles: bigger is not always better. J Spinal Disord Tech 6:333–338. doi: 10.1097/00002517-199306040-00007 CrossRefGoogle Scholar
  89. 89.
    Stokes I, Aronsson D (2006) Computer-assisted algorithms improve reliability of King classification and Cobb angle measurement of scoliosis. Spine 31:665–670. doi: 10.1097/01.brs.0000203708.49972.ab PubMedCrossRefGoogle Scholar
  90. 90.
    Stokes I, Bigalow L, Moreland M (1987) Three-dimensional spinal curvature in idiopathic scoliosis. J Orthop Res 5:102–113. doi: 10.1002/jor.1100050113 PubMedCrossRefGoogle Scholar
  91. 91.
    Stotts A, Smith J, Santora S, Roach J, D’Astous J (2002) Measurement of spinal kyphosis: implications for the management of Scheuermann’s kyphosis. Spine 27:2143–2146. doi: 10.1097/00007632-200210010-00013 PubMedCrossRefGoogle Scholar
  92. 92.
    Suh C (1974) The fundamentals of computer aided X-ray analysis of the spine. J Biomech 7:161–169. doi: 10.1016/0021-9290(74)90057-8 PubMedCrossRefGoogle Scholar
  93. 93.
    Tang F-h, Chan L, H-p Lau, P-y Tsui, C-w Cheung (2008) Computer-generated index for evaluation of idiopathic scoliosis in digital chest images: a comparison with digital measurement. J Digit Imaging 21:S113–S120. doi: 10.1007/s10278-007-9050-7 CrossRefGoogle Scholar
  94. 94.
    Tayyab N, Samartzis D, Altiok H, Shuff C, Lubicky J, Herman J, Khanna N (2007) The reliability and diagnostic value of radiographic criteria in sagittal spine deformities: comparison of the vertebral wedge ratio to the segmental Cobb angle. Spine 32:E451–E459. doi: 10.1097/BRS.0b013e3180ca7d2d PubMedCrossRefGoogle Scholar
  95. 95.
    Torell G, Nachemson A, Haderspeck-Grib K, Schultz A (1985) Standing and supine Cobb measures in girls with idiopathic scoliosis. Spine 10:425–427. doi: 10.1097/00007632-198506000-00004 PubMedCrossRefGoogle Scholar
  96. 96.
    Troyanovich S, Harrison DE, Harrison DD, Holland B, Janik T (1998) Further analysis of the reliability of the posterior tangent lateral lumbar radiographic mensuration procedure: concurrent validity of computer-aided X-ray digitization. J Manip Physiol Ther 21:460–467Google Scholar
  97. 97.
    Vaz G, Roussouly P, Berthonnaud E, Dimnet J (2002) Sagittal morphology and equilibrium of pelvis and spine. Eur Spine J 11:80–87. doi: 10.1007/s005860000224 PubMedCrossRefGoogle Scholar
  98. 98.
    Vedantam R, Lenke L, Keeney J, Bridwell K (1998) Comparison of standing sagittal spinal alignment in asymptomatic adolescents and adults. Spine 23:211–215. doi: 10.1097/00007632-199801150-00012 PubMedCrossRefGoogle Scholar
  99. 99.
    Verdonck B, Nijlunsing R, Gerritsen F, Cheung J, Wever D, Veldhuizen A, Devillers S, Makram-Ebeid S (1998) Computer assisted quantitative analysis of deformities of the human spine. In: Wells W, Colchester A, Delp S (eds) Lecture Notes in Computer Science (LNCS): Proceedings of the 1st international conference on medical image computing and computer-assisted intervention, MICCAI’98, Springer, Cambridge, MA, USA, vol 1496, pp 822–831Google Scholar
  100. 100.
    Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Jt Surg Am 87:260–267. doi: 10.2106/JBJS.D.02043 CrossRefGoogle Scholar
  101. 101.
    Voutsinas S, MacEwen G (1986) Sagittal profiles of the spine. Clin Orthop Relat Res 210:235–242PubMedGoogle Scholar
  102. 102.
    Vrtovec T, Likar B, Pernuš F (2005) Automated curved planar reformation of 3D spine images. Phys Med Biol 50:4527–4540. doi: 10.1088/0031-9155/50/19/007 PubMedCrossRefGoogle Scholar
  103. 103.
    Vrtovec T, Likar B, Pernuš F (2008) Quantitative analysis of spinal curvature in 3D: application to CT images of normal spine. Phys Med Biol 53:1895–1908. doi: 10.1088/0031-9155/53/7/006 PubMedCrossRefGoogle Scholar
  104. 104.
    Vrtovec T, Ourselin S, Lavier G, Likar B, Pernuš F (2007) Automated generation of curved planar reformations from MR images of the spine. Phys Med Biol 52:2865–2878. doi: 10.1088/0031-9155/52/10/015 PubMedCrossRefGoogle Scholar
  105. 105.
    Vrtovec T, Penuš F, Likar B (2009) A review of methods for quantitative evaluation of axial vertebral rotation. Eur Spine J (in press). doi: 10.1007/s00586-009-0914-z
  106. 106.
    Wambolt A, Spencer D (1987) A segmental analysis of the distribution of lumbar lordosis in the normal spine. Orthop Trans 11:92–93Google Scholar
  107. 107.
    Wessberg P, Danielson B, Willén J (2006) Comparison of Cobb angles in idiopathic scoliosis on standing radiographs and supine axially loaded MRI. Spine 31:3039–3044. doi: 10.1097/01.brs.0000249513.91050.80 PubMedCrossRefGoogle Scholar
  108. 108.
    Wills B, Auerbach J, Zhu X, Caird M, Horn B, Flynn J, Drummond D, Dormans J, Ecker M (2007) Comparison of Cobb angle measurement of scoliosis radiographs with preselected end vertebrae: traditional versus digital acquisition. Spine 32:98–105. doi: 10.1097/01.brs.0000251086.84420.d1 PubMedCrossRefGoogle Scholar
  109. 109.
    Yang B, Yang C, Ondra S (2007) A novel mathematical model of the sagittal spine. Spine 32:466–470. doi: 10.1097/01.brs.0000255207.44141.e9 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Tomaž Vrtovec
    • 1
  • Franjo Pernuš
    • 1
  • Boštjan Likar
    • 1
  1. 1.Laboratory of Imaging Technologies, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations