European Spine Journal

, Volume 18, Issue 4, pp 512–521 | Cite as

Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis

Original Article

Abstract

Adolescent idiopathic scoliosis (AIS) is a progressive growth disease that affects spinal anatomy, mobility, and left-right trunk symmetry. Consequently, AIS can modify human locomotion. Very few studies have investigated a simple activity like walking in a cohort of well-defined untreated patients with scoliosis. The first goal of this study is to evaluate the effects of scoliosis and scoliosis severity on kinematic and electromyographic (EMG) gait variables compared to an able-bodied population. The second goal is to look for any asymmetry in these parameters during walking. Thirteen healthy girls and 41 females with untreated AIS, with left thoracolumbar or lumbar primary structural curves were assessed. AIS patients were divided into three clinical subgroups (group 1 < 20°, group 2 between 20 and 40°, and group 3 > 40°). Gait analysis included synchronous bilateral kinematic and EMG measurements. The subjects walked on a treadmill at 4 km/h (comfortable speed). The tridimensional (3D) shoulder, pelvis, and lower limb motions were measured using 22 reflective markers tracked by four infrared cameras. The EMG timing activity was measured using bipolar surface electrodes on quadratus lumborum, erector spinae, gluteus medius, rectus femoris, semitendinosus, tibialis anterior, and gastrocnemius muscles. Statistical comparisons (ANOVA) were performed across groups and sides for kinematic and EMG parameters. The step length was reduced in AIS compared to normal subjects (7% less). Frontal shoulder, pelvis, and hip motion and transversal hip motion were reduced in scoliosis patients (respectively, 21, 27, 28, and 22% less). The EMG recording during walking showed that the quadratus lumborum, erector spinae, gluteus medius, and semitendinosus muscles contracted during a longer part of the stride in scoliotic patients (46% of the stride) compared with normal subjects (35% of the stride). There was no significant difference between scoliosis groups 1, 2, and 3 for any of the kinematic and EMG parameters, meaning that severe scoliosis was not associated with increased differences in gait parameters compared to mild scoliosis. Scoliosis was not associated with any kinematic or EMG left–right asymmetry. In conclusion, scoliosis patients showed significant but slight modifications in gait, even in cases of mild scoliosis. With the naked eye, one could not see any difference from controls, but with powerful gait analysis technology, the pelvic frontal motion (right–left tilting) was reduced, as was the motion in the hips and shoulder. Surprisingly, no asymmetry was noted but the spine seemed dynamically stiffened by the longer contraction time of major spinal and pelvic muscles. Further studies are needed to evaluate the origin and consequences of these observations.

Keywords

Scoliosis Gait Asymmetry Electromyography 

References

  1. 1.
    Allenbach E, Wiest E (1953) Condition of the paravertebral musculature in idiopathic scolioses before and after grafting. Rev Chir Orthop Repar Appar Mot 39:588–590Google Scholar
  2. 2.
    Basmajian J (1979) Muscles alive. Their functions revealed by electromyography. Baltimore, USAGoogle Scholar
  3. 3.
    Burwell RG, Aujla RK, Freeman BJ, Dangerfield PH, Cole AA, Kirby AS, Pratt RK, Webb JK, Moulton A (2006) Patterns of extra-spinal left-right skeletal asymmetries in adolescent girls with lower spine scoliosis: relative lengthening of the ilium on the curve concavity and of right lower limb segments. Stud Health Technol Inform 123:57–65PubMedGoogle Scholar
  4. 4.
    Byrd JA 3rd (1988) Current theories on the etiology of idiopathic scoliosis. Clin Orthop Relat Res 229:114–119Google Scholar
  5. 5.
    Cavagna GA, Thys H, Zamboni A (1976) The sources of external work in level walking and running. J Physiol 262:639–657PubMedGoogle Scholar
  6. 6.
    Chen PQ, Wang JL, Tsuang YH, Liao TL, Huang PI, Hang YS (1998) The postural stability control and gait pattern of idiopathic scoliosis adolescents. Clin Biomech (Bristol, Avon) 13:S52–S58. doi:10.1016/S0268-0033(97)00075-2 CrossRefGoogle Scholar
  7. 7.
    Cheung KM, Wang T, Poon AM, Carl A, Tranmer B, Hu Y, Luk KD, Leong JC (2005) The effect of pinealectomy on scoliosis development in young nonhuman primates. Spine 30:2009–2013. doi:10.1097/01.brs.0000179087.38730.5d PubMedCrossRefGoogle Scholar
  8. 8.
    Cobb J (1948) Outline for study of scoliosis. Am Acad Orthop Surg 5:261–275Google Scholar
  9. 9.
    Danielsson AJ, Romberg K, Nachemson AL (2006) Spinal range of motion, muscle endurance, and back pain and function at least 20 years after fusion or brace treatment for adolescent idiopathic scoliosis: a case–control study. Spine 31:275–283. doi:10.1097/01.brs.0000197652.52890.71 PubMedCrossRefGoogle Scholar
  10. 10.
    Davis RBOS, Tyburski D, Gage JR (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10:575–587. doi:10.1016/0167-9457(91)90046-Z CrossRefGoogle Scholar
  11. 11.
    Della Croce U, Riley PO, Lelas JL, Kerrigan DC (2001) A refined view of the determinants of gait. Gait Posture 14:79–84. doi:10.1016/S0966-6362(01)00128-X PubMedCrossRefGoogle Scholar
  12. 12.
    Dierick F, Lefebvre C, van den Hecke A, Detrembleur C (2004) Development of displacement of centre of mass during independent walking in children. Dev Med Child Neurol 46:533–539. doi:10.1017/S0012162204000891 PubMedCrossRefGoogle Scholar
  13. 13.
    Dierick F, Penta M, Renaut D, Detrembleur C (2004) A force measuring treadmill in clinical gait analysis. Gait Posture 20:299–303. doi:10.1016/j.gaitpost.2003.11.001 PubMedCrossRefGoogle Scholar
  14. 14.
    Elftman H (1951) The basic pattern of human locomotion. Ann N Y Acad Sci 51:1207–1212. doi:10.1111/j.1749-6632.1951.tb27347.x PubMedCrossRefGoogle Scholar
  15. 15.
    Gum JL, Asher MA, Burton DC, Lai SM, Lambart LM (2007) Transverse plane pelvic rotation in adolescent idiopathic scoliosis: primary or compensatory? Eur Spine J 16:1579–1586. doi:10.1007/s00586-007-0400-4 PubMedCrossRefGoogle Scholar
  16. 16.
    Guth V, Abbink F, Gotze HG, Heinrichs W (1978) Investigation of gait of patients with idiopathic scoliosis and the influence of the Milwaukee brace on gait (author’s transl). Z Orthop Ihre Grenzgeb 116:631–640PubMedGoogle Scholar
  17. 17.
    Hopf C, Scheidecker M, Steffan K, Bodem F, Eysel P (1998) Gait analysis in idiopathic scoliosis before and after surgery: a comparison of the pre and postoperative muscle activation pattern. Eur Spine J 7:6–11. doi:10.1007/s005860050019 PubMedCrossRefGoogle Scholar
  18. 18.
    Kane WJ, Moe JH (1970) A scoliosis-prevalence survey in Minnesota. Clin Orthop Relat Res 69:216–218. doi:10.1097/00003086-197003000-00022 PubMedCrossRefGoogle Scholar
  19. 19.
    Kramers-de Quervain IA, Muller R, Stacoff A, Grob D, Stussi E (2004) Gait analysis in patients with idiopathic scoliosis. Eur Spine J 13:449–456. doi:10.1007/s00586-003-0588-x PubMedCrossRefGoogle Scholar
  20. 20.
    Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, Blanke K (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 83-A:1169–1181PubMedGoogle Scholar
  21. 21.
    Lenke LG, Engsberg JR, Ross SA, Reitenbach A, Blanke K, Bridwell KH (2001) Prospective dynamic functional evaluation of gait and spinal balance following spinal fusion in adolescent idiopathic scoliosis. Spine 26:E330–E337. doi:10.1097/00007632-200107150-00020 PubMedCrossRefGoogle Scholar
  22. 22.
    Leong JC, Lu WW, Luk KD, Karlberg EM (1999) Kinematics of the chest cage and spine during breathing in healthy individuals and in patients with adolescent idiopathic scoliosis. Spine 24:1310–1315. doi:10.1097/00007632-199907010-00007 PubMedCrossRefGoogle Scholar
  23. 23.
    Lovejoy CO (2005) The natural history of human gait and posture. Part 1. Spine and pelvis. Gait Posture 21:95–112PubMedGoogle Scholar
  24. 24.
    Lovejoy CO (2005) The natural history of human gait and posture. Part 2. Hip and thigh. Gait Posture 21:113–124. doi:10.1016/j.gaitpost.2004.06.010 PubMedCrossRefGoogle Scholar
  25. 25.
    Lovejoy CO (2007) The natural history of human gait and posture. Part 3. The knee. Gait Posture 25:325–341. doi:10.1016/j.gaitpost.2006.05.001 PubMedCrossRefGoogle Scholar
  26. 26.
    Lowe TG, Edgar M, Margulies JY, Miller NH, Raso VJ, Reinker KA, Rivard CH (2000) Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg Am 82-A:1157–1168PubMedGoogle Scholar
  27. 27.
    Mac-Thiong JM, Labelle H, de Guise JA (2006) Comparison of sacropelvic morphology between normal adolescents and subjects with adolescent idiopathic scoliosis. Stud Health Technol Inform 123:195–200PubMedGoogle Scholar
  28. 28.
    MacKinnon CD, Winter DA (1993) Control of whole body balance in the frontal plane during human walking. J Biomech 26:633–644. doi:10.1016/0021-9290(93)90027-C PubMedCrossRefGoogle Scholar
  29. 29.
    Mahaudens P, Thonnard JL, Detrembleur C (2005) Influence of structural pelvic disorders during standing and walking in adolescents with idiopathic scoliosis. Spine J 5:427–433. doi:10.1016/j.spinee.2004.11.014 PubMedCrossRefGoogle Scholar
  30. 30.
    Matsumoto T, Kitahara H, Minami S, Takahashi K, Yamagata M, Moriya H, Tamaki T (1997) Flexibility in the scoliotic spine: three-dimensional analysis. J Spinal Disord 10:125–131. doi:10.1097/00002517-199704000-00005 PubMedCrossRefGoogle Scholar
  31. 31.
    Miller NH (2007) Genetics of familial idiopathic scoliosis. Clin Orthop Relat Res 462:6–10. doi:10.1097/BLO.0b013e318126c062 PubMedCrossRefGoogle Scholar
  32. 32.
    Nicolopoulos KS, Burwell RG, Webb JK (1985) Stature and its components in adolescent idiopathic scoliosis. Cephalo-caudal disproportion in the trunk of girls. J Bone Joint Surg Br 67:594–601PubMedGoogle Scholar
  33. 33.
    Perdriolle R, Vidal J (1985) Thoracic idiopathic scoliosis curve evolution and prognosis. Spine 10:785–791. doi:10.1097/00007632-198511000-00001 PubMedCrossRefGoogle Scholar
  34. 34.
    Riddle HF, Roaf R (1955) Muscle imbalance in the causation of scoliosis. Lancet 268:1245–1247. doi:10.1016/S0140-6736(55)91020-5 PubMedCrossRefGoogle Scholar
  35. 35.
    Roche AF, Eyman SL, Davila GH (1971) Skeletal age prediction. J Pediatr 78:997–1003. doi:10.1016/S0022-3476(71)80430-4 PubMedCrossRefGoogle Scholar
  36. 36.
    Rogala EJ, Drummond DS, Gurr J (1978) Scoliosis: incidence and natural history. A prospective epidemiological study. J Bone Joint Surg Am 60:173–176PubMedGoogle Scholar
  37. 37.
    Saji MJ, Upadhyay SS, Leong JC (1995) Increased femoral neck-shaft angles in adolescent idiopathic scoliosis. Spine 20:303–311. doi:10.1097/00007632-199502000-00008 PubMedCrossRefGoogle Scholar
  38. 38.
    Schwender JD, Denis F (2000) Coronal plane imbalance in adolescent idiopathic scoliosis with left lumbar curves exceeding 40 degrees: the role of the lumbosacral hemicurve. Spine 25:2358–2363. doi:10.1097/00007632-200009150-00015 PubMedCrossRefGoogle Scholar
  39. 39.
    Stoquart G, Detrembleur C, Lejeune T (2008) Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking. Neurophysiol Clin 38:105–116. doi:10.1016/j.neucli.2008.02.002 PubMedCrossRefGoogle Scholar
  40. 40.
    Stoquart GG, Detrembleur C, Palumbo S, Deltombe T, Lejeune TM (2008) Effect of botulinum toxin injection in the rectus femoris on stiff-knee gait in people with stroke: a prospective observational study. Arch Phys Med Rehabil 89:56–61. doi:10.1016/j.apmr.2007.08.131 PubMedCrossRefGoogle Scholar
  41. 41.
    Thorstensson A, Nilsson J, Carlson H, Zomlefer MR (1984) Trunk movements in human locomotion. Acta Physiol Scand 121:9–22. doi:10.1111/j.1748-1716.1984.tb10452.x PubMedCrossRefGoogle Scholar
  42. 42.
    Van Boxtel GJGL, Van den Berg Lenssen MM, Brunia CH (1993) Detection of EMG onset in ERP research. Psychophysiology 30:405–412. doi:10.1111/j.1469-8986.1993.tb02062.x PubMedCrossRefGoogle Scholar
  43. 43.
    Winter D (1991) The biomechanics and motor control of human gait: normal, elderly and pathological. Waterloo Ontario, CanadaGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • P. Mahaudens
    • 1
    • 2
    • 3
  • X. Banse
    • 3
  • M. Mousny
    • 3
  • C. Detrembleur
    • 2
  1. 1.Rehabilitation and Physical Medicine UnitUniversité catholique de LouvainBrusselsBelgium
  2. 2.Department of Physical Medicine and RehabilitationUniversité catholique de LouvainBrusselsBelgium
  3. 3.Orthopaedic Research LaboratoryUnité de RéadaptationBrusselsBelgium

Personalised recommendations