European Spine Journal

, Volume 18, Issue 6, pp 863–868

Cervical range of movement in relation to neck dimension

  • Jeremy Reynolds
  • D. Marsh
  • Heiko Koller
  • Juliane Zenenr
  • G. Bannister
Original Article

Abstract

The authors investigated the effect of neck dimension upon cervical range of motion. Data relating to 100 healthy subjects, aged between 20 and 40 years, were recorded with respect to age, gender and range of motion in three planes. Additionally, two widely used methods of measuring neck motion, chin-sternal distance and uniplanar goniometer, were assessed against a validated measurement tool, the ‘CROM goniometer’. Using multiple linear regression analysis it was determined that sagittal flexion (P = 0.002) and lateral rotation (P < 0.0001) were most closely related to neck circumference alone whereas lateral flexion (P < 0.0001) was most closely related to a ratio of circumference and length of neck. Hence, assessing cervical range of motion as outcome variable or as a measure at posttreatment follow-up, neck circumference was shown to be one of the factors influencing total neck motion, particularly sagittal flexion and lateral tilt. Comparison of cervical range of motion assessed with a validated measurement tool, the CROM goniometer, with results of both frequently applied clinician’s instruments, the uniplanar goniometer and measurement of chin-sternal distance, showed low reliability with the latter techniques, and motion values measured with these techniques should be interpreted with caution if using them for comparison of cervical range of motion of alike groups. We demonstrated that neck dimension should be incorporated into cervical functional outcome assessment and one should be wary about recorded values for neck motion from non-validated measurement tools.

Keywords

Cervical spine Goniometer Neck dimension Morphology Range of motion 

References

  1. 1.
    Alaranta H, Hurri H, Heliovaara M, Soukks A, Harju R (1994) Flexibility of the spine: normative values of goniometric and tape measurements. Scand J Rehabil Med 24:147–154Google Scholar
  2. 2.
    Antonaci F, Ghirmai S, Bono G, Nappi G (2000) Current methods for cervical spine movement evaluation: a review. Clin Exp Rheumatol 18:S45–S52PubMedGoogle Scholar
  3. 3.
    Armstrong B, McNair P, Taylor D (2008) Head and neck position sense. Sports Med 38:101–117. doi:10.2165/00007256-200838020-00002 PubMedCrossRefGoogle Scholar
  4. 4.
    Bovim G, Schrader H, Sand T (1994) Neck pain in the general population. Spine 19:1307–1309PubMedGoogle Scholar
  5. 5.
    Capuano-Pucci D, Rheault W, Aulai J, Bracke M, Day R, Pastrick M (1991) Intratester and intertester reliability of the cervical range of motion device. Arch Phys Med Rehabil 72:338–340PubMedGoogle Scholar
  6. 6.
    Castro WH, Sautmann A, Schilgen M, Sautmann M (2000) Noninvasive three-dimensional analysis of cervical spine motion in normal subjects in relation to age and sex. An experimental examination. Spine 25:443–449. doi:10.1097/00007632-200002150-00009 PubMedCrossRefGoogle Scholar
  7. 7.
    Chen J, Solinger A, Poncett F, Lantz C (1999) Meta-analysis of normative cervical motion. Spine 24:1571–1578. doi:10.1097/00007632-199908010-00011 PubMedCrossRefGoogle Scholar
  8. 8.
    Christensen H, Nilsson N (1999) The ability to reproduce the neutral zero position of the head. J Manipulative Physiol Ther 22:26–28. doi:10.1016/S0161-4754(99)70102-8 PubMedCrossRefGoogle Scholar
  9. 9.
    Cote P, Cassidy JD, Carroll L (2000) The factors associated with neck pain and its related disability in the Saskatechewan population. Spine 25:1109–1117. doi:10.1097/00007632-200005010-00012 PubMedCrossRefGoogle Scholar
  10. 10.
    Demaille-Wlodyka S, Chiquet C, Lavaste J-F, Skalli W, Revel M, Poiraudaeau (2007) Cervical range of motion and cephalic kinesthesis—ultrasonographic analysis by age and sex. Spine 32:E254–E261. doi:10.1097/01.brs.0000259919.82461.57 PubMedCrossRefGoogle Scholar
  11. 11.
    Feipel V, Rondelet B, Le Pallec J-P, Rooze M (1999) Normal global motion of the cervical spine: an electrogoniometric study. Clin Biomech (Bristol, Avon) 14:462–470. doi:10.1016/S0268-0033(98)90098-5 CrossRefGoogle Scholar
  12. 12.
    Hole DE, Cook JM, Bolton JE (1995) Reliability and concurrent validity of two instruments for measuring cervical range of motion: effects of age and gender. Man Ther 1:36–42. doi:10.1054/math.1995.0248 PubMedCrossRefGoogle Scholar
  13. 13.
    Jordan K (2000) Assessment of published reliability studies for cervical spine range-of-motion measurement tools. J Manipulative Physiol Ther 23:180–195. doi:10.1016/S0161-4754(00)90248-3 PubMedCrossRefGoogle Scholar
  14. 14.
    Kasch H, Stengaard-Pedersen K, Arendt-Nielsen L, Staehelin Jensen T (2001) Headache, neck pain, and neck mobility after acute whiplash injury: a prospective study. Radiologic, and psychosocial findings. Spine 26(11):1246–1251PubMedCrossRefGoogle Scholar
  15. 15.
    Makela M, Heliovaara M, Sievers K, Impivaara O, Knekt P, Aromaa A (1991) Prevalence, determinants, and consequences of chronic neck pain in Finland. Am J Epidemiol 134:1356–1367PubMedGoogle Scholar
  16. 16.
    Nilsson N (1995) Measuring passive cervical motion: a study of reliability. J Manipulative Physiol Ther 18:293–297PubMedGoogle Scholar
  17. 17.
    Nilsson N, Christinse HW, Hartvigsen J (1996) The interexaminer reliability of measuring passive cervical range of motion, revisited. J Manipulative Physiol Ther 19:302–305PubMedGoogle Scholar
  18. 18.
    Platzer P, Thalhammer G, Ostermann R, Wieland R, Vecsei V, Gaebler C (2007) Anterior screw fixation of odontoid fractures comparing younger and elderly patients. Spine 32:1714–1720. doi:10.1097/BRS.0b013e3180dc9758 PubMedCrossRefGoogle Scholar
  19. 19.
    Radonov BP, Dvorak J (1996) Impaired cognitive functioning after whiplash injury of the cervical spine. Spine 21:392–397. doi:10.1097/00007632-199602010-00029 CrossRefGoogle Scholar
  20. 20.
    Spitzer WO, Skovron ML, Salmi LR, Cassidy JD, Duranceau J, Suissa S, Zeiss E (1995) Scientific monograph of the Quebec task force on whiplash-associated disorders: redefining “whiplash” and its management. Spine 20:S1–S73CrossRefGoogle Scholar
  21. 21.
    Squires B, Gargan MF, Bannister GC (1996) Soft tissue injuries of the cervical spine 15 year follow up. J Bone Joint Surg Br 78-B:955–957. doi:10.1302/0301-620X78B6.1267 CrossRefGoogle Scholar
  22. 22.
    Tousignant M, de Bellefeuille L, O’Donoughue S, Grahovac S (2000) Criterion validity of the cervical range of motion (CROM) goniometer for cervical flexion and extension. Spine 25:324–330. doi:10.1097/00007632-200002010-00011 PubMedCrossRefGoogle Scholar
  23. 23.
    Trott P, Pearcy M, Ruston S, Fulton I, Brien C (1996) Three-dimensional analysis of active cervical: the effect of age and gender. Clin Biomech (Bristol, Avon) 11:201–206. doi:10.1016/0268-0033(95)00072-0 CrossRefGoogle Scholar
  24. 24.
    Webb R, Brammah T, Lunt M, urwin M, Allison T, Symmons D (2003) Prevalence and predictors of intense, chronic, and disabling neck and back pain in the UK general population. Spine 28:1195–1202. doi:10.1097/00007632-200306010-00021 PubMedCrossRefGoogle Scholar
  25. 25.
    Youdas J, Garrett T, Suman V, Bogard C, Hallman H, Carey J (1992) Normal range of motion of the cervical spine: an initial goniometric study. Phys Ther 72:770–779PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jeremy Reynolds
    • 1
  • D. Marsh
    • 2
  • Heiko Koller
    • 3
  • Juliane Zenenr
    • 3
  • G. Bannister
    • 4
  1. 1.Nuffield Orthopaedic CentreOxford, OxfordshireUK
  2. 2.Mount Vernon HospitalLondonUK
  3. 3.Department for Trauma and Sports InjuriesParacelsus Medical University SalzburgSalzburgAustria
  4. 4.North Bristol NHS TrustBristolUK

Personalised recommendations