Advertisement

European Spine Journal

, Volume 18, Issue 4, pp 479–489 | Cite as

Calcification in the ovine intervertebral disc: a model of hydroxyapatite deposition disease

  • James MelroseEmail author
  • D. Burkhardt
  • T. K. F. Taylor
  • C. T. Dillon
  • R. Read
  • M. Cake
  • C. B. Little
Original Article

Abstract

The study design included a multidisciplinary examination of the mineral phase of ovine intervertebral disc calcifications. The objective of the study was to investigate the mineral phase and its mechanisms of formation/association with degeneration in a naturally occurring animal model of disc calcification. The aetiology of dystrophic disc calcification in adult humans is unknown, but occurs as a well-described clinical disorder with hydroxyapatite as the single mineral phase. Comparable but age-related pathology in the sheep could serve as a model for the human disorder. Lumbar intervertebral discs (n = 134) of adult sheep of age 6 years (n = 4), 8 years (n = 12) and 11 years (n = 2) were evaluated using radiography, morphology, scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray powder diffraction, histology, immunohistology and proteoglycan analysis. Half of the 6-year, 84% of the 8-year and 86% of the 11-year-old discs had calcific deposits. These were not well delineated by plain radiography. They were either: (a) punctate deposits in the outer annulus, (b) diffuse deposits in the transitional zone or inner annulus fibrosus with occasional deposits in the nucleus, or (c) large deposits in the transitional zone extending variably into the nucleus. Their maximal incidence was in the lower lumbar discs (L4/5–L6/7) with no calcification seen in the lumbosacral or lower thoracic discs. All deposits were hydroxyapatite with large crystallite sizes (800–1,300 Å) compared to cortical bone (300–600 Å). No type X-collagen, osteopontin or osteonectin were detected in calcific deposits, although positive staining for bone sialoprotein was evident. Calcified discs had less proteoglycan of smaller hydrodynamic size than non-calcified discs. Disc calcification in ageing sheep is due to hydroxyapatite deposition. The variable, but large, crystal size and lack of protein markers indicate that this does not occur by an endochondral ossification-like process. The decrease in disc proteoglycan content and size suggests that calcification may precede or predispose to disc degeneration in ageing sheep.

Keywords

Ageing Animal model Dystrophic calcification Hydroxyapatite 

Notes

Acknowledgments

Ms Susan Smith is thanked for undertaking the histology and immunolocalisations used in this study. Dr Larry Fisher, National Institutes of Health, National Institute of Dental Care and Research, Bethesda, USA is thanked for the generous gifts of antibodies to bone sialoprotein, osteopontin and osteonectin. This study was funded by: the Sir Charles Cutler Memorial Fund, Institute of Bone and Joint Research, University of Sydney, Royal North Shore Hospital; Medtronics Australia and NHMRC project Grant 352562.

References

  1. 1.
    Abbott KH, Leimbach WH, Retter RH (1957) Further observations on thoracic disk protrusions. Bull Los Angel Neuro Soc 22:58–68PubMedGoogle Scholar
  2. 2.
    Aessopos A, Tsironi M, Polonifi K, Baltopoulos P, Vaiopoulos G (2008) Intervertebral disc calcification in thalassemia intermedia. Eur J Haematol 80:164–167PubMedGoogle Scholar
  3. 3.
    Alford AI, Hankenson KD (2006) Matricellular proteins: extracellular modulators of bone development, remodeling, and regeneration. Bone 38:749–757. doi: 10.1016/j.bone.2005.11.017 PubMedCrossRefGoogle Scholar
  4. 4.
    Baker JR, Lyon DG (1975) A case of intervertebral disc degeneration and prolapse with spondylosis in a sheep. Vet Rec 96:290PubMedGoogle Scholar
  5. 5.
    Bigi A, Cojazzi G, Panzavolta S, Ripamonti A, Roveri N, Romanello M, Noris Suarez K, Moro L (1997) Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J Inorg Biochem 68:45–51. doi: 10.1016/S0162-0134(97)00007-X PubMedCrossRefGoogle Scholar
  6. 6.
    Bozzola J, Russell LD (1999) Electron microscopy, 2nd edn. In: Bozzola JJ, Russell LD (eds) Jone and Bartlett Pubs, Sudbury, pp 369–395Google Scholar
  7. 7.
    Chanchairujira K, Chung CB, Kim JY, Papakonstantinou O, Lee MH, Clopton P, Resnick D (2004) Intervertebral disk calcification of the spine in an elderly population: radiographic prevalence, location, and distribution and correlation with spinal degeneration. Radiology 230:499–503. doi: 10.1148/radiol.2302011842 PubMedCrossRefGoogle Scholar
  8. 8.
    Chen NX, Moe SM (2006) Uremic vascular calcification. J Investig Med 54:380–384. doi: 10.2310/6650.2006.06017 PubMedCrossRefGoogle Scholar
  9. 9.
    Cheng XG, Brys P, Nijs J, Nicholson P, Jiang Y, Baert AL, Dequeker J (1996) Radiological prevalence of lumbar intervertebral disc calcification in the elderly: an autopsy study. Skeletal Radiol 25:231–235. doi: 10.1007/s002560050070 PubMedCrossRefGoogle Scholar
  10. 10.
    Cohen JA, Abraham E (1973) The calcified intervertebral disc: a non-specific roentgenologic sign. J Med Soc N J 70:459–460PubMedGoogle Scholar
  11. 11.
    Depalma AF, Kruper JS (1961) Long-term study of shoulder joints afflicted with and treated for calcific tendinitis. Clin Orthop Relat Res 20:61–72Google Scholar
  12. 12.
    Durant DM, Riley LH 3rd, Burger PC, McCarthy EF (2001) Tumoral calcinosis of the spine: a study of 21 cases. Spine 26:1673–1679. doi: 10.1097/00007632-200108010-00009 PubMedCrossRefGoogle Scholar
  13. 13.
    Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177PubMedGoogle Scholar
  14. 14.
    Fazzalari NL, Costi JJ, Hearn TC, Fraser RD, Vernon-Roberts B, Hutchinson J, Manthey BA, Parkinson IH, Sinclair C (2001) Mechanical and pathologic consequences of induced concentric annular tears in an ovine model. Spine 26:2575–2581. doi: 10.1097/00007632-200112010-00010 PubMedCrossRefGoogle Scholar
  15. 15.
    Feinberg J, Boachie-Adjei O, Bullough PG, Boskey AL (1990) The distribution of calcific deposits in intervertebral discs of the lumbosacral spine. Clin Orthop Relat Res 254:303–310PubMedGoogle Scholar
  16. 16.
    Fews D, Brown PJ, Alterio GL (2006) A case of invertebral disc degeneration and prolapse with Schmorl’s node formation in a sheep. Vet Comp Orthop Traumatol 19:187–189PubMedGoogle Scholar
  17. 17.
    Fitzpatrick LA, Turner RT, Ritman ER (2003) Endochondral bone formation in the heart: a possible mechanism of coronary calcification. Endocrinology 144:2214–2219. doi: 10.1210/en.2002-0170 PubMedCrossRefGoogle Scholar
  18. 18.
    Garcia GM, McCord GC, Kumar R (2003) Hydroxyapatite crystal deposition disease. Semin Musculoskelet Radiol 7:187–193. doi: 10.1055/s-2003-43229 PubMedCrossRefGoogle Scholar
  19. 19.
    Ghosh P, Taylor TK, Horsburgh BA (1975) The composition and protein metabolism in the immature rabbit intervertebral disc. Cell Tissue Res 163:223–238. doi: 10.1007/BF00221729 PubMedCrossRefGoogle Scholar
  20. 20.
    Hansen HJ (1951) A pathologic–anatomical interpretation of disc degeneration in dogs. Acta Orthop Scand 20:280–293PubMedCrossRefGoogle Scholar
  21. 21.
    Hansen HJ (1952) A pathologic–anatomical study on disc degeneration in dog, with special reference to the so-called enchondrosis intervertebralis. Acta Orthop Scand Suppl 11:1–117PubMedGoogle Scholar
  22. 22.
    Hansen HJ, Ullberg S (1960) Uptake of S35 in the intervertebral discs after injection of S35-sulphate: an autoradiographic study. Acta Orthop Scand 30:84–90PubMedGoogle Scholar
  23. 23.
    Hermann G, Sacher M, Lanzieri CF, Anderson PJ, Rabinowitz JG (1985) Chondrosarcoma of the spine: an unusual radiographic presentation. Skeletal Radiol 14:178–183. doi: 10.1007/BF00355558 PubMedCrossRefGoogle Scholar
  24. 24.
    Lee RS, Kayser MV, Ali SY (2006) Calcium phosphate microcrystal deposition in the human intervertebral disc. J Anat 208:13–19. doi: 10.1111/j.1469-7580.2006.00504.x PubMedCrossRefGoogle Scholar
  25. 25.
    Lindgren I (1961) Anatomical and roentgenologic studies of tuberculous infections in BCG-vaccinated and non-vaccinated subjects with biophysical investigations of calcified foci. Acta Radiol Suppl 209:1–101PubMedCrossRefGoogle Scholar
  26. 26.
    Melrose J, Ghosh P, Taylor TK, Hall A, Osti OL, Vernon-Roberts B, Fraser RD (1992) A longitudinal study of the matrix changes induced in the intervertebral disc by surgical damage to the annulus fibrosus. J Orthop Res 10:665–676. doi: 10.1002/jor.1100100509 PubMedCrossRefGoogle Scholar
  27. 27.
    Melrose J, Ghosh P, Taylor TK (1994) Proteoglycan heterogeneity in the normal adult ovine intervertebral disc. Matrix Biol 14:61–75. doi: 10.1016/0945-053X(94)90030-2 PubMedCrossRefGoogle Scholar
  28. 28.
    Melrose J, Ghosh P, Taylor TKF, McAuley L (1994) Variation in the composition of the ovine intervertebral disc with spinal level and in its constituent proteoglycans. Vet Comp Orthop Traumatol 7:70–76Google Scholar
  29. 29.
    Melrose J, Ghosh P, Taylor TK, Latham J, Moore R (1997) Topographical variation in the catabolism of aggrecan in an ovine annular lesion model of experimental disc degeneration. J Spinal Disord 10:55–67. doi: 10.1097/00002517-199702000-00008 PubMedCrossRefGoogle Scholar
  30. 30.
    Melrose J, Ghosh P, Taylor TK, Vernon-Roberts B, Latham J, Moore R (1997) Elevated synthesis of biglycan and decorin in an ovine annular lesion model of experimental disc degeneration. Eur Spine J 6:376–384. doi: 10.1007/BF01834063 PubMedCrossRefGoogle Scholar
  31. 31.
    Melrose J, Smith S, Ghosh P (2004) Cartilage and osteoarthritis. Vol 2. Structure and in-vivo analysis. Chapter 3 Histological and immunohistological studies on cartilage. Humana Press, TotawaGoogle Scholar
  32. 32.
    Melrose J, Smith SM, Fuller ES, Young AA, Roughley PJ, Dart A, Little CB (2007) Biglycan and fibromodulin fragmentation correlates with temporal and spatial annular remodelling in experimentally injured ovine intervertebral discs. Eur Spine J 16(12):2193–2205. doi: 10.1007/s00586-007-0497-5 PubMedCrossRefGoogle Scholar
  33. 33.
    Miller JA, Schmatz C, Schultz AB (1988) Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. Spine 13:173–178. doi: 10.1097/00007632-198802000-00008 PubMedCrossRefGoogle Scholar
  34. 34.
    Moe SM, Chen NX (2004) Pathophysiology of vascular calcification in chronic kidney disease. Circ Res 95:560–567. doi: 10.1161/01.RES.0000141775.67189.98 PubMedCrossRefGoogle Scholar
  35. 35.
    Moe SM, Chen NX (2005) Inflammation and vascular calcification. Blood Purif 23:64–71. doi: 10.1159/000082013 PubMedCrossRefGoogle Scholar
  36. 36.
    Moseley HF (1963) The vascular supply of the rotator cuff. Surg Clin North Am 43:1521–1522PubMedGoogle Scholar
  37. 37.
    Osti OL, Vernon-Roberts B, Fraser RD (1990) 1990 Volvo Award in experimental studies. Anulus tears and intervertebral disc degeneration: an experimental study using an animal model. Spine 15:762–767. doi: 10.1097/00007632-199008010-00005 PubMedCrossRefGoogle Scholar
  38. 38.
    Rees SG, Shellis RP, Embery G (2002) Inhibition of hydroxyapatite crystal growth by bone proteoglycans and proteoglycan components. Biochem Biophys Res Commun 292:727–733. doi: 10.1006/bbrc.2002.6699 PubMedCrossRefGoogle Scholar
  39. 39.
    Reid JE, Meakin JR, Robins SP, Skakle JM, Hukins DW (2002) Sheep lumbar intervertebral discs as models for human discs. Clin Biomech (Bristol, Avon) 17:312–314. doi: 10.1016/S0268-0033(02)00009-8 CrossRefGoogle Scholar
  40. 40.
    Rothman RH, Parke WW (1965) The vascular anatomy of the rotator cuff. Clin Orthop Relat Res 41:176–186. doi: 10.1097/00003086-196500410-00020 PubMedCrossRefGoogle Scholar
  41. 41.
    Sanerkin NG, Watt I (1981) Enchondromata with annular calcification in association with fibrous dysplasia. Br J Radiol 54:1027–1033PubMedCrossRefGoogle Scholar
  42. 42.
    Souter WA, Taylor TK (1969) Acid mucopolysaccharide metabolism in the rabbit intervertebral disc. J Bone Joint Surg Br 51:385–386PubMedGoogle Scholar
  43. 43.
    Souter WA, Taylor TK (1970) Sulphated acid mucopolysaccharide metabolism in the rabbit intervertebral disc. J Bone Joint Surg Br 52:371–384PubMedGoogle Scholar
  44. 44.
    Takeuchi E, Sugamoto K, Nakase T, Miyamoto T, Kaneko M, Tomita T, Myoui A, Ochi T, Yoshikawa H (2001) Localization and expression of osteopontin in the rotator cuff tendons in patients with calcifying tendinitis. Virchows Arch 438:612–617. doi: 10.1007/s004280000367 PubMedCrossRefGoogle Scholar
  45. 45.
    Taylor TK, Little K (1963) Calcification in the intervertebral disk. Nature 199:612–613. doi: 10.1038/199612b0 PubMedCrossRefGoogle Scholar
  46. 46.
    Taylor TK, Little K (1964) Prolapsed calcified thoracic intervertebral disc. J Pathol Bacteriol 88:153–157. doi: 10.1002/path.1700880120 PubMedCrossRefGoogle Scholar
  47. 47.
    Taylor TKF, Ghosh P, Bushell GR, Stephens RW (1981) Scientific basis of the treatment of intervertebral disc disorders. Heinemann Mediacl Books, LondonGoogle Scholar
  48. 48.
    Taylor TK, Melrose J, Burkhardt D, Ghosh P, Claes LE, Kettler A, Wilke HJ (2000) Spinal biomechanics and aging are major determinants of the proteoglycan metabolism of intervertebral disc cells. Spine 25:3014–3020. doi: 10.1097/00007632-200012010-00008 PubMedCrossRefGoogle Scholar
  49. 49.
    Uhthoff HK (1975) Calcifying tendinitis, an active cell-mediated calcification. Virchows Arch A Pathol Anat Histol 366:51–58. doi: 10.1007/BF00438677 PubMedCrossRefGoogle Scholar
  50. 50.
    Uhthoff HK, Sarkar K, Maynard JA (1976) Calcifying tendinitis: a new concept of its pathogenesis. Clin Orthop Relat Res (118):164–168Google Scholar
  51. 51.
    Wang J, Zhou HY, Salih E, Xu L, Wunderlich L, Gu X, Hofstaetter JG, Torres M, Glimcher MJ (2006) Site-specific in vivo calcification and osteogenesis stimulated by bone sialoprotein. Calcif Tissue Int 79:179–189. doi: 10.1007/s00223-006-0018-2 PubMedCrossRefGoogle Scholar
  52. 52.
    Weinberger A, Myers AR (1978) Intervertebral disc calcification in adults: a review. Semin Arthritis Rheum 8:69–75. doi: 10.1016/0049-0172(78)90035-5 PubMedCrossRefGoogle Scholar
  53. 53.
    Wicks IP, Fleming A (1987) Chondrosarcoma of the calcaneum and massive soft tissue calcification in a patient with hereditary and acquired connective tissue diseases. Ann Rheum Dis 46:346–348. doi: 10.1136/ard.46.4.346 PubMedCrossRefGoogle Scholar
  54. 54.
    Wilke HJ, Kettler A, Claes LE (1997) Are sheep spines a valid biomechanical model for human spines? Spine 22:2365–2374. doi: 10.1097/00007632-199710150-00009 PubMedCrossRefGoogle Scholar
  55. 55.
    Wilke HJ, Kettler A, Wenger KH, Claes LE (1997) Anatomy of the sheep spine and its comparison to the human spine. Anat Rec 247:542–555. doi:10.1002/(SICI)1097-0185(199704)247:4<542::AID-AR13>3.0.CO;2-PPubMedCrossRefGoogle Scholar
  56. 56.
    Williams R (1954) Complete protrusion of a calcified nucleus pulposus in the thoracic spine: report of a case. J Bone Joint Surg Br 36-B:597–600PubMedGoogle Scholar
  57. 57.
    Ziv V, Weiner S (1994) Bone crystal sizes: a comparison of transmission electron microscopic and X-ray diffraction line width broadening techniques. Connect Tissue Res 30:165–175. doi: 10.3109/03008209409061969 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • James Melrose
    • 1
    • 5
    Email author
  • D. Burkhardt
    • 1
  • T. K. F. Taylor
    • 1
    • 2
  • C. T. Dillon
    • 3
  • R. Read
    • 4
  • M. Cake
    • 4
  • C. B. Little
    • 1
  1. 1.Raymond Purves Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical ResearchUniversity of Sydney, Royal North Shore HospitalSydneyAustralia
  2. 2.Department of Orthopaedics and Traumatic SurgeryRoyal North Shore HospitalSydneyAustralia
  3. 3.School of ChemistryUniversity of WollongongWollongongAustralia
  4. 4.School of Veterinary and Biomedical SciencesMurdoch UniversityMurdochAustralia
  5. 5.Raymond Purves Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute of Medical Research B6Royal North Shore HospitalSydneyAustralia

Personalised recommendations