European Spine Journal

, Volume 18, Issue 2, pp 180–187 | Cite as

The role of spinal concave–convex biases in the progression of idiopathic scoliosis

  • Mark Driscoll
  • Carl-Eric AubinEmail author
  • Alain Moreau
  • Isabelle Villemure
  • Stefan Parent
Original Article


Inadequate understanding of risk factors involved in the progression of idiopathic scoliosis restrains initial treatment to observation until the deformity shows signs of significant aggravation. The purpose of this analysis is to explore whether the concave–convex biases associated with scoliosis (local degeneration of the intervertebral discs, nucleus migration, and local increase in trabecular bone-mineral density of vertebral bodies) may be identified as progressive risk factors. Finite element models of a 26° right thoracic scoliotic spine were constructed based on experimental and clinical observations that included growth dynamics governed by mechanical stimulus. Stress distribution over the vertebral growth plates, progression of Cobb angles, and vertebral wedging were explored in models with and without the biases of concave–convex properties. The inclusion of the bias of concave–convex properties within the model both augmented the asymmetrical loading of the vertebral growth plates by up to 37% and further amplified the progression of Cobb angles and vertebral wedging by as much as 5.9° and 0.8°, respectively. Concave–convex biases are factors that influence the progression of scoliotic curves. Quantifying these parameters in a patient with scoliosis may further provide a better clinical assessment of the risk of progression.


Scoliosis Growth modulation Hemiepiphysiodesis Finite element model 



Funded by the Natural Sciences and Engineering Research Council of Canada, Medtronic Sofamor Danek and the Canada Research Chair Program.


  1. 1.
    Adams M, McNally D, Dolan P (1996) Stress distribution inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg 78:965–972. doi: 10.1302/0301-620X78B6.1287 CrossRefGoogle Scholar
  2. 2.
    Adams M, McNally D, Wagstaff J, Goodship A (1993) Abnormal stress concentrations in lumbar intervertebral discs following damage to the vertebral bodies: a cause for disc failure? Eur Spine J 1:214–221. doi: 10.1007/BF00298362 CrossRefPubMedGoogle Scholar
  3. 3.
    Aubin CE, Dansereau J, Petit Y, Parent S, De Guise J, Labelle H (1998) Three-dimensional measurement of wedged scoliotic vertebrae and intervertebral discs. Eur Spine J 7:59–65. doi: 10.1007/s005860050029 PubMedCrossRefGoogle Scholar
  4. 4.
    Delorme S, Petit Y, De Guisse J, Aubin CE, Dansereau J (2003) Assessment of the 3-D reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic Images. IEEE Trans Biomed Eng 50:989–998. doi: 10.1109/TBME.2003.814525 PubMedCrossRefGoogle Scholar
  5. 5.
    Dimeglio A, Ferran J (1990) Three-dimensional analysis of the hip during growth. Acta Orthop Belg 56:111–114PubMedGoogle Scholar
  6. 6.
    Gilsanz V, Boechat M, Roe T, Loro M, Sayre J, Goodman W (1994) Gender difference in vertebral body sizes in children and adolescents. Radiology 190:673–677PubMedGoogle Scholar
  7. 7.
    Goel K, Clausen J (1998) Prediction of load sharing among spinal components of a C5–C6 motion segment using the finite element approach. Spine 23(6):684–691. doi: 10.1097/00007632-199803150-00008 PubMedCrossRefGoogle Scholar
  8. 8.
    Grant J, Oxland T, Dvorak M, Fisher C (2002) The effects of bone mineral density and disc degeneration on the structural property distribution in the lower lumbar vertebral endplates. J Orthop Res 20:1115–1120. doi: 10.1016/S0736-0266(02)00039-6 PubMedCrossRefGoogle Scholar
  9. 9.
    Guerin H, Elliott D (2006) Degeneration affects the fibber reorientation of human annulus fibrosus under tensile load. J Biomech 39:1410–1418. doi: 10.1016/j.jbiomech.2005.04.007 PubMedCrossRefGoogle Scholar
  10. 10.
    He Y, Qiu Y, Zhu Z (2006) Quantitative analysis of types I and II collagen in the disc annulus in adolescent idiopathic scoliosis. Stud Health Technol Inform 123:123–128PubMedGoogle Scholar
  11. 11.
    Horst M, Brinckmann P (1981) Measurement of the distribution of axial stress on the end-plate of the vertebral body. Spine 6(3):217–232. doi: 10.1097/00007632-198105000-00004 PubMedCrossRefGoogle Scholar
  12. 12.
    Huynh A, Aubin CE, Mathieu P, Labelle H (2007) Simulation of progressive spinal deformities in duchenne muscular dystrophy using a biomechanical model integrating muscle and vertebral growth modulation. Clin Biomech (Bristol, Avon) 22:392–399. doi: 10.1016/j.clinbiomech.2006.11.010 CrossRefGoogle Scholar
  13. 13.
    Kamibayashi L, Wyss U, Cooke T, Zee B (1995) Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone 17(1):27–35. doi: 10.1016/8756-3282(95)00137-3 PubMedCrossRefGoogle Scholar
  14. 14.
    Keller T, Hansson T, Abram A, Spengler D, Panjabi M (1989) Regional variations in the compressive properties of lumbar vertebral trabeculae. Effects of disc degeneration. Spine 14(9):1012–1019. doi: 10.1097/00007632-198909000-00016 PubMedCrossRefGoogle Scholar
  15. 15.
    Keller T, Ziv I, Moeljanto E, Spengler D (1993) Interdependence of lumbar disc and subdiscal bone properties: a report of the normal and degenerated spine. J Spinal Disord 6(2):106–113. doi: 10.1097/00002517-199304000-00003 PubMedCrossRefGoogle Scholar
  16. 16.
    Kilincer C, Inceoglu S, Sohn M, Ferrada L, Bakirci N, Benzel E (2007) Load sharing within a human thoracic vertebral body: an in vitro biomechanical study. Turk Neurosurg 17:167–177PubMedGoogle Scholar
  17. 17.
    Li S, Patwardhan A, Amirouche F, Harvey R, Meade K (1995) Limitations of the standard linear solid model of intervertebral disc subject to prolonged loading and low-frequency vibration in axial compression. J Biomech 28:779–790. doi: 10.1016/0021-9290(94)00140-Y PubMedCrossRefGoogle Scholar
  18. 18.
    McNally D, Adams M (1992) Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17(1):66–73. doi: 10.1097/00007632-199201000-00011 PubMedCrossRefGoogle Scholar
  19. 19.
    Mehlman C, Araghi A, Roy D (1997) Hyphenated history: the Hueter–Volkmann law. Am J Orthop 26:798–800PubMedGoogle Scholar
  20. 20.
    Meir A, Fairbank J, Jones D, McNally D, Urban J (2007) High pressures and asymmetrical stresses in the scoliotic disc in the absence of muscle loading. Scoliosis 2:4. doi: 10.1186/1748-7161-2-4 PubMedCrossRefGoogle Scholar
  21. 21.
    Mitton D, Rumelhart C, Hans D, Meunier P (1997) The effects of density and test conditions on measured compression and shear strength of cancellous bone from the lumbar vertebrae of ewes. Med Eng Phys 19:464–474. doi: 10.1016/S1350-4533(97)00001-5 PubMedCrossRefGoogle Scholar
  22. 22.
    Nachemson A (1965) In vivo discometry in lumbar discs with irregular nucleograms. Some differences in stress distribution between normal and moderately degenerated discs. Acta Orthop Scand 36:418–434PubMedCrossRefGoogle Scholar
  23. 23.
    Nanjo Y, Morio Y, Nagashima H, Hagino H, Teshima R (2003) Correlation between bone mineral density and intervertebral disc degeneration in pre- and postmenopausal women. J Bone Miner Metab 21:22–27. doi: 10.1007/s007740300004 PubMedCrossRefGoogle Scholar
  24. 24.
    Nielson D, McEvoy F, Madsen M, Jensen J, Svalastoga E (2007) Relationship between bone strength and dual-energy X-ray absorptiometry measurements in pigs. J Anim Sci 85:667–672. doi: 10.2527/jas.2006-025 CrossRefGoogle Scholar
  25. 25.
    Oshia R, Tencer A, Ching R (2003) Effect of loading on endplate and vertebral body strength in human lumbar vertebrae. J Biomech 36:1875–1881. doi: 10.1016/S0021-9290(03)00211-2 CrossRefGoogle Scholar
  26. 26.
    Parent S, Labelle H, Skalli W, De Guise J (2004) Vertebral wedging characteristics changes in scoliotic spines. Spine 29(20):E455–E462. doi: 10.1097/01.brs.0000142430.65463.3a PubMedCrossRefGoogle Scholar
  27. 27.
    Patwardhan A, Havey R (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 24(10):1003–1009. doi: 10.1097/00007632-199905150-00014 PubMedCrossRefGoogle Scholar
  28. 28.
    Perie D, Curnier D, De Gauzy J (2003) Correlation between nucleus zone migration within scoliotic intervertebral discs and mechanical properties distribution within scoliotic vertebrae. Magn Reson Imaging 21:949–953. doi: 10.1016/S0730-725X(03)00216-9 PubMedCrossRefGoogle Scholar
  29. 29.
    Perie D, De Gauzy J, Curnier D, Hobatho M (2001) Intervertebral disc modeling using a MRI method: migration of the nucleus zone within scoliotic intervertebral discs. Magn Reson Imaging 19:1245–1248. doi: 10.1016/S0730-725X(01)00452-0 PubMedCrossRefGoogle Scholar
  30. 30.
    Price J, Oyajobi B, Russell R (1994) The cell biology of bone growth. Eur J Clin Nutr 48:131–149Google Scholar
  31. 31.
    Rumancik S, Routh R, Pathak R, Burshell A, Nauman E (2005) Assessment of bone quality and distribution in adult lumbar scoliosis: new dual-energy X-ray absorptiometry methology and analysis. Spine 30:434–439. doi: 10.1097/01.brs.0000153344.06682.b2 PubMedCrossRefGoogle Scholar
  32. 32.
    Schultz A, Andersson G, Ortengren R, Nachemson A (1982) Loads on the lumbar spine. Validation of a biomechanical analysis by measurement of intradiscal pressures and myoelectric signals. J Bone Joint Surg 64:713–720PubMedGoogle Scholar
  33. 33.
    Stokes I (2007) Analysis and simulation of progressive adolescent scoliosis by biomechanical growth simulation. Eur Spine J 16:1621–1628. doi: 10.1007/s00586-007-0442-7 PubMedCrossRefGoogle Scholar
  34. 34.
    Stokes I, Aronsson D, Dimock A, Cortright V, Beck S (2006) Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res 24(6):1327–1333. doi: 10.1002/jor.20189 PubMedCrossRefGoogle Scholar
  35. 35.
    Stokes I, Gardner-Morse M (2004) Muscle activation strategies and symmetry of spinal loading in the lumbar spine with scoliosis. Spine 29:2103–2107. doi: 10.1097/01.brs.0000141182.42544.1f PubMedCrossRefGoogle Scholar
  36. 36.
    Sylvestre PL, Villemure I, Aubin CE (2007) Finite element modeling of the growth plate in a detailed spine model. Med Biol Eng Comput 45:977–988. doi: 10.1007/s11517-007-0220-z PubMedCrossRefGoogle Scholar
  37. 37.
    Urban M, Fairbank J, Bibby S, Urban J (2001) Intervertebral disc composition in neuromuscular scoliosis: changes in cell density and glycosaminoglycan concentration at the curve apex. Spine 26(6):610–617. doi: 10.1097/00007632-200103150-00010 PubMedCrossRefGoogle Scholar
  38. 38.
    Villemure I, Aubin CE, Dansereau J (2002) Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth. J Biomed Eng 124(6):784–790Google Scholar
  39. 39.
    Villemure I, Aubin CE, Grimard G, Dansereau J, Labelle H (2001) Progression of vertebral and spinal three-dimensional deformities in adolescent idiopathic scoliosis: a longitudinal study. Spine 26(20):2244–2250. doi: 10.1097/00007632-200110150-00016 PubMedCrossRefGoogle Scholar
  40. 40.
    Wilke H, Neef P, Caimi M, Hoogland T, Claes L (1999) New In vivo measurements pressures intervertebral disc in daily life. Spine 24(8):755–762PubMedCrossRefGoogle Scholar
  41. 41.
    Wolff J (1892) Das Gesetz der Transformation der Knoche. Hirshwald, BerlinGoogle Scholar
  42. 42.
    Yerramalli C, Chou A, Miller G, Nicoll S, Chin K, Elliot D (2007) The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function. Biomech Model Mechanobiol 6:13–20. doi: 10.1007/s10237-006-0043-0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Mark Driscoll
    • 1
    • 2
  • Carl-Eric Aubin
    • 1
    • 2
    • 5
    Email author
  • Alain Moreau
    • 2
    • 3
    • 4
  • Isabelle Villemure
    • 1
    • 2
  • Stefan Parent
    • 2
  1. 1.Ecole Polytechnique de Montréal, Biomedical Engineering InstituteMontrealCanada
  2. 2.Research Center Sainte-Justine University HospitalMontrealCanada
  3. 3.Department of Stomatology, Faculty of DentistryUniversité de MontréalMontrealCanada
  4. 4.Department of Biochemistry, Faculty of MedicineUniversité de MontréalMontrealCanada
  5. 5.Ecole Polytechnique de Montreal, Mechanical Engineering DepartmentCanada Research Chair CAD Innovations in Orthopedic Engineering, NSERC/Medtronic Industrial Research Chair in Spine BiomechanicsMontrealCanada

Personalised recommendations