European Spine Journal

, Volume 18, Issue 4, pp 465–470 | Cite as

Biomechanical evaluation of segmental instability in degenerative lumbar spondylolisthesis

  • Kazuhiro HasegewaEmail author
  • Ko Kitahara
  • Toshiaki Hara
  • Ko Takano
  • Haruka Shimoda
Original Article


Here we investigated the biomechanical properties of spinal segments in patients with degenerative lumbar spondylolisthesis (DLS) using a novel intraoperative measurement system. The measurement system comprised spinous process holders, a motion generator, a load cell, an optical displacement transducer, and a computer. Cyclic displacement of the holders produced flexion-extension of the segment with all ligamentous structures intact. Stiffness, absorption energy (AE), and neutral zone (NZ) were determined from the load-deformation data. Forty-one patients with DLS (M/F = 15/26, mean age 68.6 years; Group D) were studied. Adjacent segments with normal discs in six patients (M/F = 3/3, mean age 35 years) were included as a control group (Group N). Flexion stiffness was significantly lower in Group D than in Group N. The NZ, however, was significantly greater in Group D than in Group N. Thus, compared to normal segments, spinal segments with DLS had a lower flexion stiffness and a higher NZ. NZs in Group D were, however, widely distributed compared to those in Group N that showed NZ <2 mm/N in all cases, suggesting that the segment with DLS is not always unstable and that the segments with NZ >2 mm/N can be considered as unstable.


Intraoperative biomechanical analysis Lumbar degenerative spondylolisthesis Segmental instability 


Conflict of interest statement

No grant or any other funding has been recieved.


  1. 1.
    Brown MD, Holms SH, Heiner AD (2002) Intraoperative measurement of lumbar spine motion segment stiffness. Spine 27:954–958. doi: 10.1097/00007632-200205010-00014 PubMedCrossRefGoogle Scholar
  2. 2.
    Chaput C, Padon D, Rush J, Lenehan E, Rahm M (2007) The significance of increased fluid signal on magnetic resonance imaging in lumbar facets in relationship to degenerative spondylolisthesis. Spine 32:1883–1887. doi: 10.1097/BRS.0b013e318113271a PubMedCrossRefGoogle Scholar
  3. 3.
    Dupuis PR, Yong-hing K, Cassidy JD, Kirkaldy-Willis WH (1985) Radiographic diagnosis of degenerative lumbar spinal instability. Spine 10:262–276. doi: 10.1097/00007632-198504000-00015 PubMedCrossRefGoogle Scholar
  4. 4.
    Dvoák J, Panjabi MM, Chang DG, Theiler R, Grob D (1991) Functional radiographic diagnosis of degenerative lumbar spine: Flexion-extension and lateral bending. Spine 16:562–571. doi: 10.1097/00007632-199105000-00014 CrossRefGoogle Scholar
  5. 5.
    Ebara S, Harada T, Hosono N (1992) Intraoperative measurement of lumbar spinal instability. Spine 17:S44–S50. doi: 10.1097/00007632-199203001-00010 PubMedCrossRefGoogle Scholar
  6. 6.
    Fujiwara A, Lim TH, An HS, Tanaka N, Jeon CH, Andersson GBJ, Haughton VM (2000) The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine 25:3036–3044. doi: 10.1097/00007632-200012010-00011 PubMedCrossRefGoogle Scholar
  7. 7.
    Frymoyer JW, Selby D (1985) Segmental instability: rationale for treatment. Spine 10:280–286. doi: 10.1097/00007632-198504000-00017 PubMedCrossRefGoogle Scholar
  8. 8.
    Gertzbein SD, Seligman J, Holtby R, Chan KH, Kapasouri A, Tile M, Cruickshank B (1985) Centrode patterns and segmental instability in degenerative disc disease. Spine 10:257–261. doi: 10.1097/00007632-198504000-00014 PubMedCrossRefGoogle Scholar
  9. 9.
    Hasegawa K, Kitahara K, Hara T, Takano K, Shimoda H, Homma T (2008) Evaluation of lumbar segmental instability in degenerative diseases using a new intraoperative measurement system. J Neurosurg Spine 8:255–262. doi: 10.3171/SPI/2008/8/3/255 PubMedCrossRefGoogle Scholar
  10. 10.
    Hayes MA, Howard TC, Gruel CR, Kopta JA (1989) Roentgenographic evaluation of lumbar spine flexion-extension in asymptomatic individuals. Spine 14:327–331. doi: 10.1097/00007632-198903000-00014 PubMedCrossRefGoogle Scholar
  11. 11.
    Iguchi T, Kanemura A, Kasahara K, Kurihara A, Doita M, Yoshiya S (2003) Age distribution of three radiologic factors for lumbar instability: probable aging process of the instability with disc degeneration. Spine 28:2628–2633. doi: 10.1097/01.BRS.0000097162.80495.66 PubMedCrossRefGoogle Scholar
  12. 12.
    Kaigle AM, Holm SH, Hansson TH (1995) Experimental instability in the lumbar spine. Spine 20:421–430. doi: 10.1097/00007632-199502001-00004 PubMedCrossRefGoogle Scholar
  13. 13.
    Kanayama M, Abumi K, Kaneda K (1996) Phase lag of the intersegmental motion in flexion-extension of the lumbar and lumbosacral spine: an in vivo study. Spine 21:1416–1422. doi: 10.1097/00007632-199606150-00004 PubMedCrossRefGoogle Scholar
  14. 14.
    Kanayama M, Hashimoto T, Shigenobu K, Oha F, Ishida T, Yamane S (2003) Intraoperative biomechanical assessment of lumbar spinal instability: validation of radiographic parameters indicating anterior column support in lumbar spinal fusion. Spine 28:2368–2372. doi: 10.1097/01.BRS.0000085357.24025.27 PubMedCrossRefGoogle Scholar
  15. 15.
    Kirkaldy-Willis WH, Farfan HF (1982) Instability of the lumbar spine. Clin Orthop Relat Res 165:110–123PubMedGoogle Scholar
  16. 16.
    Knutsson F (1944) The instability associated with disc degeneration in the lumbar spine. Acta Radiol 25:593–609. doi: 10.3109/00016924409136488 CrossRefGoogle Scholar
  17. 17.
    Luk KD, Chow DH, Holmes A (2003) Vertical instability in spondylolisthesis: a traction radiographic assessment technique and the principle of management. Spine 28:819–827. doi: 10.1097/00007632-200304150-00016 PubMedCrossRefGoogle Scholar
  18. 18.
    Macnab I (1950) Spondylolisthesis with an intact neural arch—the so-called pseudo-spondylolisthesis. J Bone Joint Surg Br 32:325–333PubMedGoogle Scholar
  19. 19.
    Martin CR, Gruszczynski AT, Braunsfurth HA, Fallatah SM, O’Neil J, Wai EK (2007) The surgical management of degenerative lumbar spondylolisthesis. A systematic review. Spine 32:1791–1798. doi: 10.1097/BRS.0b013e3180bc219e PubMedCrossRefGoogle Scholar
  20. 20.
    Mimura M, Panjabi MM, Oxland TR (1994) Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 19:1371–1380PubMedCrossRefGoogle Scholar
  21. 21.
    Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–199PubMedGoogle Scholar
  22. 22.
    Morgan FP, King T (1957) Primary instability of lumbar vertebrae as a cause of low back pain. J Bone Joint Surg Br 39:6–22PubMedGoogle Scholar
  23. 23.
    Ogon M, Bender BR, Hooper DM, Spratt KF, Goel VK, Wilder DG, Pope MH (1997) A dynamic approach to spinal instability. Part I: sensitization of intersegmental motion profiles to motion direction and load condition by instability. Spine 22:2841–2858. doi: 10.1097/00007632-199712150-00007 PubMedCrossRefGoogle Scholar
  24. 24.
    Okawa A, Shinomiya K, Komori H, Muneta T, Arai Y, Nakai O (1998) Dynamic motion study of the whole lumbar spine by videofluoroscopy. Spine 23:1743–1749. doi: 10.1097/00007632-199808150-00007 PubMedCrossRefGoogle Scholar
  25. 25.
    Panjabi MM, Goel VK, Takata K (1982) Physiologic strains in the lumbar spinal ligaments. Spine 7:192–203. doi: 10.1097/00007632-198205000-00003 PubMedCrossRefGoogle Scholar
  26. 26.
    Panjabi MM, Krag M, Chung T (1984) Effects of disc injury on mechanical behaviour of the human spine. Spine 9:707–713. doi: 10.1097/00007632-198410000-00010 PubMedCrossRefGoogle Scholar
  27. 27.
    Panjabi MM (1992) The stabilizing system of the spine. PartII. Neutral zone and instability hypothesis. J Spinal Disord 5:390–397PubMedCrossRefGoogle Scholar
  28. 28.
    Pearcy M, Portek I, Shepherd J (1985) The effect of low back pain on lumbar spinal movements measured by three-dimensional x-ray analysis. Spine 10:150–153. doi: 10.1097/00007632-198503000-00007 PubMedCrossRefGoogle Scholar
  29. 29.
    Pennal GF, Conn GS, McDonald G, Dale G, Garside H (1972) Motion studies of the lumbar spine. A preliminary report. J Bone Joint Surg Br 54:442–452PubMedGoogle Scholar
  30. 30.
    Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26:1873–1878. doi: 10.1097/00007632-200109010-00011 PubMedCrossRefGoogle Scholar
  31. 31.
    Stokes IA, Wilder DG, Frymoyer JW, Pope MH (1981) Assessment of patients with low back pain by biplanar radiographic measurement of intervertebral motion. Spine 6:233–240. doi: 10.1097/00007632-198105000-00005 PubMedCrossRefGoogle Scholar
  32. 32.
    Takano K, Hasegawa K, Kitahara K, Hara T, Sato S, Endo N (2006) Lumbar segmental motion properties in vivo determined by a new intraoperative measurement system. Acta Med Biol (Niigata) 54:1–8Google Scholar
  33. 33.
    Thompson JP, Pearce RH, Schechter MT (1990) Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine 15:411–415. doi: 10.1097/00007632-199005000-00012 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Kazuhiro Hasegewa
    • 1
    Email author
  • Ko Kitahara
    • 2
  • Toshiaki Hara
    • 3
  • Ko Takano
    • 1
  • Haruka Shimoda
    • 1
  1. 1.Niigata Spine Surgery CenterNiigataJapan
  2. 2.Showa Ikakogyou CoToyohashiJapan
  3. 3.Faculty of EngineeringNiigata UniversityNiigataJapan

Personalised recommendations