European Spine Journal

, Volume 17, Issue 11, pp 1462–1469 | Cite as

Assessment of different screw augmentation techniques and screw designs in osteoporotic spines

  • S. Becker
  • A. Chavanne
  • R. Spitaler
  • K. Kropik
  • N. Aigner
  • M. Ogon
  • H. Redl
Original Article


This is an experimental study on human cadaver spines. The objective of this study is to compare the pullout forces between three screw augmentation methods and two different screw designs. Surgical interventions of patients with osteoporosis increase following the epidemiological development. Biomechanically the pedicle provides the strongest screw fixation in healthy bone, whereas in osteoporosis all areas of the vertebra are affected by the disease. This explains the high screw failure rates in those patients. Therefore PMMA augmentation of screws is often mandatory. This study involved investigation of the pullout forces of augmented transpedicular screws in five human lumbar spines (L1–L4). Each spine was treated with four different methods: non-augmented unperforated (solid) screw, perforated screw with vertebroplasty augmentation, solid screw with vertebroplasty augmentation and solid screw with balloon kyphoplasty augmentation. Screws were augmented with Polymethylmethacrylate (PMMA). The pullout forces were measured for each treatment with an Instron testing device. The bone mineral density was measured for each vertebra with Micro-CT. The statistical analysis was performed with a two-sided independent student t test. Forty screws (10 per group and level) were inserted. The vertebroplasty-augmented screws showed a significant higher pullout force (mean 918.5 N, P = 0.001) than control (mean 51 N), the balloon kyphoplasty group did not improve the pullout force significantly (mean 781 N, P > 0.05). However, leakage occurred in some cases treated with perforated screws. All spines showed osteoporosis on Micro-CT. Vertebroplasty-augmented screws, augmentation of perforated screws and balloon kyphoplasty augmented screws show higher pullout resistance than non-augmented screws. Significant higher pullout forces were only reached in the vertebroplasty augmented vertebra. The perforated screw design led to epidural leakage due to the position of the perforation in the screw. The position of the most proximal perforation is critical, depending on screw design and proper insertion depth. Nevertheless, using a properly designed perforated screw will facilitate augmentation and instrumentation in osteoporotic spines.


Osteoporosis Screw augmentation Perforated screws Vertebroplasty Balloon kyphoplasty Transpedicular fixation/stabilization 



The authors thank several people for their contribution and advice for this work: G. Zanoni from the Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna; I. Boecken, D. Beer, R. Egger and B. Schenk, Synthes, Bettlach, Switzerland and L. Kaufman, Vrije Universiteit Brussel, Belgium for advising on the statistical analysis. The study was financed from a grant from Synthes (Bettlach, Switzerland).


  1. 1.
    Belkoff SM, Molloy S (2003) Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty. Spine 28(14):1555–1559. doi: 10.1097/00007632-200307150-00015 PubMedCrossRefGoogle Scholar
  2. 2.
    Bohner M (2008) Injectable cements for vertebroplatsy and kyphoplasty. In: Becker S, Ogon M (eds) Balloon kyphoplasty. Springer Wien, New York, pp 143–149CrossRefGoogle Scholar
  3. 3.
    Brantley AG, Mayfield JK, Koeneman JB, Clark KR (1994) The effects of pedicle screw fit. An in vitro study. Spine 1 19(15):1752–1758CrossRefGoogle Scholar
  4. 4.
    Burval DJ, McLain RF, Milks R, Inceoglu S (2007) Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine 1 32(10):1077–1083CrossRefGoogle Scholar
  5. 5.
    Coe JD, Warden KE, Herzig MA, McAfee PC (1990) Influence of bone mineral density on the fixation of thoracolumbar implants. A comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine 15(9):902–907. doi: 10.1097/00007632-199009000-00012 PubMedCrossRefGoogle Scholar
  6. 6.
    Cook SD, Salkeld SL, Stanley T, Faciane A, Miller SD (2004) Biomechanical study of pedicle screw fixation in severely osteoporotic bone. Spine J 4(4):402–408. doi: 10.1016/j.spinee.2003.11.010 PubMedCrossRefGoogle Scholar
  7. 7.
    Crafts NFR (1997) The human development index and changes in standards of living: some historical comparisons. Eur Rev Econ Hist 1:299–322Google Scholar
  8. 8.
    DeWald CJ, Stanley T (2006) Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine 1 31(19 Suppl):144–151CrossRefGoogle Scholar
  9. 9.
    Frankel BM, D’Agostino S, Wang C (2007) A biomechanical cadaveric analysis of polymethylmethacrylate-augmented pedicle screw fixation. J Neurosurg Spine 7(1):47–53. doi: 10.3171/SPI-07/07/047 PubMedCrossRefGoogle Scholar
  10. 10.
    Frankel BM, Jones T, Wang C (2007) Segmental polymethylmethacrylate-augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: a clinical evaluation. Neurosurgery 61(3):531–537PubMedCrossRefGoogle Scholar
  11. 11.
    Garfin SR, Hansen A, Reiley MA (2001) New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine 26(14):1511–1515. doi: 10.1097/00007632-200107150-00002 PubMedCrossRefGoogle Scholar
  12. 12.
    Grubb SA, Lipscomb HJ, Coonrad RW (1988) Degenerative adult onset scoliosis. Spine 13(3):241–245. doi: 10.1097/00007632-198803000-00004 PubMedCrossRefGoogle Scholar
  13. 13.
    Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS 3rd, Cook SD (1994) Effects of bone mineral density on pedicle screw fixation. Spine 1 19(21):2415–2420CrossRefGoogle Scholar
  14. 14.
    Healey JH, Vigorita VJ, Lane JM (1985) The coexistence and characteristics of osteoarthritis and osteoporosis. J Bone Joint Surg 67-A:586–592Google Scholar
  15. 15.
    Heini PF (2005) The current treatment—a survey of osteoporotic fracture treatment. Osteoporotic spine fractures: the spine surgeon’s perspective. Osteoporos Int 16(Suppl 2):85–92. doi: 10.1007/s00198-004-1723-1 CrossRefGoogle Scholar
  16. 16.
    Herzig M Das Festigkeitsverhalten transpedikulärer Fixationssysteme für die lumbale Wirbelsäule im zyklisch-dynamischen Dauerversuch (2004) German National Library. Accessed Jan 2008
  17. 17.
    Hilibrand AS, Moore DC, Graziano GP (1996) The role of pediculolaminar fixation in compromised pedicle bone. Spine 21(4):445–451PubMedCrossRefGoogle Scholar
  18. 18.
    Hirano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, Sugiura T, Yokaichiya M, Ikeda M (1997) Structural characteristics of the pedicle and its role in screw stability. Spine 22(21):2504–2509PubMedCrossRefGoogle Scholar
  19. 19.
    Hu SS (1997) Internal fixation in the osteoporotic spine. Spine 22(24 Suppl):43–48CrossRefGoogle Scholar
  20. 20.
    Hulme PA, Boyd SK, Ferguson SJ (2007) Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone 41(6):946–957. doi: 10.1016/j.bone.2007.08.019 PubMedCrossRefGoogle Scholar
  21. 21.
    Kanis JA, Pitt FA (1992) Epidemiology of osteoporosis. Bone 13(Suppl 1):S7–S15. doi: 10.1016/8756-3282(92)90189-4 PubMedCrossRefGoogle Scholar
  22. 22.
    Krag MH, Beynnon BD, Pope MH, Frymoyer JW, Haugh LD, Weaver DL (1986) An internal fixator for posterior application to short segments of the thoracic, lumbar, or lumbosacral spine. Design and testing. Clin Orthop Relat Res 203:75–98PubMedGoogle Scholar
  23. 23.
    Law M, Tencer AF, Anderson PA (1993) Caudo-cephalad loading of pedicle screws: mechanisms of loosening and methods of augmentation. Spine 18(16):2438–2443. doi: 10.1097/00007632-199312000-00012 PubMedCrossRefGoogle Scholar
  24. 24.
    Linhardt O, Lüring C, Matussek J, Hamberger C, Herold T, Plitz W et al (2006) Stability of anterior vertebral body screws after kyphoplasty augmentation. An experimental study to compare anterior vertebral body screw fixation in soft and cured kyphoplasty cement. Int Orthop 30(5):366–370. doi: 10.1007/s00264-006-0100-4 PubMedCrossRefGoogle Scholar
  25. 25.
    Linhardt O, Lüring C, Matussek J, Hamberger C, Plitz W, Grifka J (2006) Stability of pedicle screws after kyphoplasty augmentation: an experimental study to compare transpedicular screw fixation in soft and cured kyphoplasty cement. J Spinal Disord Tech 19(2):87–91. doi: 10.1097/ PubMedCrossRefGoogle Scholar
  26. 26.
    Lonstein JE, Denis F, Perra JH, Pinto MR, Smith MD, Winter RB (1999) Complications associated with pedicle screws. J Bone Joint Surg Am 81(11):1519–1528PubMedGoogle Scholar
  27. 27.
    Maestretti G, Cremer C, Otten P, Jakob RP (2007) Prospective study of standalone balloon kyphoplasty with calcium phosphate cement augmentation in traumatic fractures. Eur Spine J 16(5):601–610. doi: 10.1007/s00586-006-0258-x PubMedCrossRefGoogle Scholar
  28. 28.
    Moore DC, Maitra RS, Farjo LA, Graziano GP, Goldstein SA (1997) Restoration of pedicle screw fixation with an in situ setting calcium phosphate cement. Spine 22(15):1696–1705PubMedCrossRefGoogle Scholar
  29. 29.
    Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K (2001) Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J 1(6):402–407. doi: 10.1016/S1529-9430(01)00078-X PubMedCrossRefGoogle Scholar
  30. 30.
    Pfeifer BA, Krag MH, Johnson C (1994) Repair of failed transpedicle screw fixation. A biomechanical study comparing polymethylmethacrylate, milled bone, and matchstick bone reconstruction. Spine 19(3):350–353PubMedCrossRefGoogle Scholar
  31. 31.
    Riggs BL, Melton LJ 3rd (1995) The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 17(5 Suppl):505–511. doi: 10.1016/8756-3282(95)00258-4 CrossRefGoogle Scholar
  32. 32.
    Sarzier JS, Evans AJ, Cahill DW (2002) Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. Neurosurg 96(3 Suppl):309–312Google Scholar
  33. 33.
    Schizas C, Michel J, Kosmopoulos V, Theumann N (2007) Computer tomography assessment of pedicle screw insertion in percutaneous posterior transpedicular stabilization. Eur Spine J 16:613–617. doi: 10.1007/s00586-006-0221-x PubMedCrossRefGoogle Scholar
  34. 34.
    Skinner R, Maybee J, Transfeldt E, Venter R, Chalmers W (1990) Experimental pullout testing and comparison of variables in transpedicular screw fixation. A biomechanical study. Spine 15(3):195–201. doi: 10.1097/00007632-199003000-00007 PubMedCrossRefGoogle Scholar
  35. 35.
    Soshi S, Shiba R, Kondo H, Murota K (1991) An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine. Spine 16(11):1335–1341. doi: 10.1097/00007632-199111000-00015 PubMedCrossRefGoogle Scholar
  36. 36.
    Takigawa T, Tanaka M, Konishi H, Ikuma H, Misawa H, Sugimoto Y et al (2007) Comparative biomechanical analysis of an improved novel pedicle screw with sheath and bone cement. J Spinal Disord Tech 20(6):462–467. doi: 10.1097/BSD.0b013e318030d2d6 PubMedCrossRefGoogle Scholar
  37. 37.
    Tan JS, Bailey CS, Dvorak MF, Fisher CG, Cripton PA, Oxland TR (2007) Cement augmentation of vertebral screws enhances the interface strength between interbody device and vertebral body. Spine 1 32(3):334–341CrossRefGoogle Scholar
  38. 38.
    Taylor RS, Taylor RJ, Fritzell P (2006) Balloon kyphoplasty and vertebroplasty for vertebral compression fractures: a comparative systematic review of efficacy and safety. Spine 31(23):2747–2755PubMedCrossRefGoogle Scholar
  39. 39.
    Vanderpool DW, James JI, Wynne-Davies R (1969) Scoliosis in the elderly. J Bone Joint Surg Am 51(3):446–455PubMedGoogle Scholar
  40. 40.
    Weinstein JN, Rydevik BL, Rauschning W (1992) Anatomic and technical considerations of pedicle screw fixation. Clin Orthop Relat Res (284):34–46Google Scholar
  41. 41.
    Wittenberg RH, Lee KS, Shea M, White AA 3rd, Hayes WC (1993) Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength. Clin Orthop Relat Res 296:278–287PubMedGoogle Scholar
  42. 42.
    Zdeblick TA, Kunz DN, Cooke ME, McCabe R (1993) Pedicle screw pullout strength. Correlation with insertional torque. Spine 18(12):1673–1676PubMedCrossRefGoogle Scholar
  43. 43.
    Zindrick MR, Wiltse LL, Widell EH, Thomas JC, Holland WR, Field BT et al (1986) A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res 203:99–112PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • S. Becker
    • 1
  • A. Chavanne
    • 1
  • R. Spitaler
    • 3
  • K. Kropik
    • 3
  • N. Aigner
    • 2
  • M. Ogon
    • 1
  • H. Redl
    • 3
  1. 1.Spine CentreOrthopaedic Hospital SpeisingViennaAustria
  2. 2.Orthopaedic Hospital SpeisingViennaAustria
  3. 3.Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue RegenerationViennaAustria

Personalised recommendations