European Spine Journal

, Volume 17, Issue 11, pp 1431–1440

Low bone mineral status in adolescent idiopathic scoliosis

Review

Abstract

Adolescent idiopathic scoliosis (AIS) is a pathological entity of unknown etiology. The causes of osteoporosis or osteopenia in AIS remain undetermined. Whether poor bone quality is an etiologic factor remains controversial. To determine the correlation between low bone mineral status and AIS, a review of literature was performed. After a literature search from 1966 to June 2007 (using Medline, EMBASE, Cochrane DSR, ACP Journal Club, DARE, CCTR, CINAHL and hand searches of references) for studies regarding low bone mineral status and AIS, 20 studies meeting the inclusion criteria were reviewed in terms of the appropriateness of valuation technique, the validity of descriptive system, the number and type of respondents, and overall quality of the studies. Nearly all investigations demonstrated that low bone mineral density (BMD) was a generalized phenomenon and a systematic disorder in AIS. The prevalence of AIS with osteoporosis is approximately 20–38%. The follow-up studies indicated that osteopenia in patients with AIS may be a persistent phenomenon. BMD could be affected by the mechanical loading and lower bone mineral mass is always associated with lower bone strength. The spinal architecture associated with the osteopenia may aggravate the spinal deformity. However, with regard to the concave and convex femoral neck BMD values, and the correlation of BMD to scoliosis parameters, the results remain inconsistent. Bracing may not result in permanent loss of bone mineral mass. The effect of the eccentric tension–compression environments on BMD, the correlation of BMD with scoliosis parameters and the effect of bracing on BMD should be investigated further in prospective, randomized and longitudinal follow-up studies.

Keywords

Adolescent idiopathic scoliosis Bone mineral density Osteoporosis Osteopenia 

References

  1. 1.
    Bartal E, Gage JR (1982) Idiopathic juvenile osteoporosis and scoliosis. J Pediatr Orthop 2:295–298PubMedGoogle Scholar
  2. 2.
    Bassett CA (1995) Why are the principles of physics and anatomy important in treating osteoporosis? Calcif Tissue Int 56:515–516. doi:10.1007/BF00298578 PubMedCrossRefGoogle Scholar
  3. 3.
    Burner WL, Badger VM, Sherman FC (1982) Osteoporosis and acquired back deformities. J Pediatr Orthop 2:383–385PubMedGoogle Scholar
  4. 4.
    Cheng JC, Guo X (1997) Osteopenia in adolescent idiopathic scoliosis: a primary problem or secondary to the spinal deformity? Spine 22:1716–1721. doi:10.1097/00007632-199708010-00006 PubMedCrossRefGoogle Scholar
  5. 5.
    Cheng JC, Guo X, Sher AH (1999) Persistent osteopenia in adolescent idiopathic scoliosis: a longitudinal follow up study. Spine 24:1218–1222. doi:10.1097/00007632-199906150-00008 PubMedCrossRefGoogle Scholar
  6. 6.
    Cheng JC, Hung VW, Lee WT, Yeung HY, Lam TP, Ng BK et al (2006) Persistent osteopenia in adolescent idiopathic scoliosis—longitudinal monitoring of bone mineral density until skeletal maturity. Stud Health Technol Inform 123:47–51PubMedGoogle Scholar
  7. 7.
    Cheng JC, Qin L, Cheung CS, Sher AH, Lee KM, Ng SW et al (2000) Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res 15:1587–1595. doi:10.1359/jbmr.2000.15.8.1587 PubMedCrossRefGoogle Scholar
  8. 8.
    Cheng JC, Sher HL, Guo X, Hung VW, Cheung AY (2001) The effect of vertebral rotation of the lumbar spine on dual energy X-ray absorptiometry measurements: observational study. Hong Kong Med J 7:241–245PubMedGoogle Scholar
  9. 9.
    Cheng JC, Tang SP, Guo X, Chan CW, Qin L (2001) Osteopenia in adolescent idiopathic scoliosis: a histomorphometric study. Spine 26:E19–E23. doi:10.1097/00007632-200104150-00023 PubMedCrossRefGoogle Scholar
  10. 10.
    Cheung CS, Lee WT, Tse YK, Lee KM, Guo X, Qin L et al (2006) Generalized osteopenia in adolescent idiopathic scoliosis—association with abnormal pubertal growth, bone turnover, and calcium intake? Spine 31:330–338. doi:10.1097/01.brs.0000197410.92525.10 PubMedCrossRefGoogle Scholar
  11. 11.
    Cook SD, Harding AF, Morgan EL, Nicholson RJ, Thomas KA, Whitecloud TS et al (1987) Trabecular bone mineral density in idiopathic scoliosis. J Pediatr Orthop 7:168–174PubMedGoogle Scholar
  12. 12.
    Courtois I, Collet P, Mouilleseaux B, Alexandre C (1999) Bone mineral density at the femur and lumbar spine in a population of young women treated for scoliosis in adolescence. Rev Rhum Engl Ed 66:705–710PubMedGoogle Scholar
  13. 13.
    Enneking WF, Harrington P (1969) Pathological changes in scoliosis. J Bone Joint Surg Am 51:165–184PubMedGoogle Scholar
  14. 14.
    Fuchs RK, Bauer JJ, Snow CM (2001) Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 16:148–156. doi:10.1359/jbmr.2001.16.1.148 PubMedCrossRefGoogle Scholar
  15. 15.
    Girardi FP, Parvataneni HK, Sandhu HS, Cammisa FP Jr, Grewal H, Schneider R et al (2001) Correlation between vertebral body rotation and two-dimensional vertebral bone density measurement. Osteoporos Int 12:738–740. doi:10.1007/s001980170049 PubMedCrossRefGoogle Scholar
  16. 16.
    Glastre C, Braillon P, David L, Cochat P, Meunier PJ, Delmas PD (1990) Measurement of bone mineral content of the lumbar spine by dual energy X-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab 70:1330–1333PubMedCrossRefGoogle Scholar
  17. 17.
    Hans D, Biot B, Schott AM, Meunier PJ (1996) No diffuse osteoporosis in lumbar scoliosis but lower femoral bone density on the convexity. Bone 18:15–17. doi:10.1016/8756-3282(95)00421-1 PubMedCrossRefGoogle Scholar
  18. 18.
    Hans D, Genton L, Drezner MK, Schott AM, Pacifici R, Avioli L et al (2002) Monitored impact loading of the hip: initial testing of a home-use device. Calcif Tissue Int 71:112–120. doi:10.1007/s00223-001-2063-1 PubMedCrossRefGoogle Scholar
  19. 19.
    Hoppenfeld S, Lopez RA, Molnar G (1991) Plantar weight-bearing pattern in idiopathic scoliosis. Spine 16:757–760. doi:10.1097/00007632-199107000-00012 PubMedCrossRefGoogle Scholar
  20. 20.
    Houde JP, Schulz LA, Morgan WJ, Breen T, Warhold L, Crane GK et al (1995) Bone mineral density changes in the forearm after immobilization. Clin Orthop Relat Res 317:199–205PubMedGoogle Scholar
  21. 21.
    Hung VW, Qin L, Cheung CS, Lam TP, Ng BK, Tse YK et al (2005) Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am 87:2709–2716. doi:10.2106/JBJS.D.02782 PubMedCrossRefGoogle Scholar
  22. 22.
    Larnach TA, Boyd SJ, Smart RC, Butler SP, Rohl PG, Diamond TH (1992) Reproducibility of lateral spine scans using dual energy X-ray absorptiometry. Calcif Tissue Int 51:255–258. doi:10.1007/BF00334484 PubMedCrossRefGoogle Scholar
  23. 23.
    Lee WT, Cheung CS, Tse YK, Guo X, Qin L, Ho SC et al (2005) Generalized low bone mass of girls with adolescent idiopathic scoliosis is related to inadequate calcium intake and weight bearing physical activity in peripubertal period. Osteoporos Int 16:1024–1035. doi:10.1007/s00198-004-1792-1 PubMedCrossRefGoogle Scholar
  24. 24.
    Lee WT, Cheung CS, Tse YK, Guo X, Qin L, Lam TP et al (2005) Association of osteopenia with curve severity in adolescent idiopathic scoliosis: a study of 919 girls. Osteoporos Int 16:1924–1932. doi:10.1007/s00198-005-1964-7 PubMedCrossRefGoogle Scholar
  25. 25.
    Leonard MB, Zemel BS (2002) Current concepts in pediatric bone disease. Pediatr Clin North Am 49:143–173. doi:10.1016/S0031-3955(03)00113-5 PubMedCrossRefGoogle Scholar
  26. 26.
    Lewiecki EM, Watts NB, McClung MR, Petak SM, Bachrach LK, Shepherd JA, Downs RW Jr, International Society for Clinical Densitometry (2004) Official positions of the international society for clinical densitometry. J Clin Endocrinol Metab 89:3651–3655. doi:10.1210/jc.2004-0124 PubMedCrossRefGoogle Scholar
  27. 27.
    Lindsay R, Meunier PJ (1998) Osteoporosis: review of the evidence for prevention, diagnosis and treatment and cost-effectiveness analysis. Osteoporos Int 8(Suppl 4):S1–S88. doi:10.1007/s001980050040 Google Scholar
  28. 28.
    Nachemson AL, Peterson LE (1995) Effectiveness of treatment with a brace in girls who have adolescent idiopathic scoliosis. A prospective, controlled study based on data from the Brace Study of the Scoliosis Research Society. J Bone Joint Surg Am 77:815–822PubMedGoogle Scholar
  29. 29.
    Nicholson PH, Haddaway MJ, Davie MW, Evans SF (1993) Vertebral deformity, bone mineral density, back pain and height loss in unscreened women over 50 years. Osteoporos Int 3:300–307. doi:10.1007/BF01637315 PubMedCrossRefGoogle Scholar
  30. 30.
    Nurmi-Lawton JA, Baxter-Jones AD, Mirwald RL, Bishop JA, Taylor P, Cooper C et al (2004) Evidence of sustained skeletal benefits from impact-loading exercise in young females: a 3-year longitudinal study. J Bone Miner Res 19:314–322. doi:10.1359/JBMR.0301222 PubMedCrossRefGoogle Scholar
  31. 31.
    Nysom K, Molgaard C, Michaelsen KF (1998) Bone mineral density in the lumbar spine as determined by dual-energy X-ray absorptiometry. Comparison of whole-body scans and dedicated regional scans. Acta Radiol 39:632–636PubMedCrossRefGoogle Scholar
  32. 32.
    Rantakokko J, Uusitalo H, Jamsa T, Tuukkanen J, Aro HT, Vuorio E (1999) Expression profiles of mRNAs for osteoblast and osteoclast proteins as indicators of bone loss in mouse immobilization osteopenia model. J Bone Miner Res 14:1934–1942. doi:10.1359/jbmr.1999.14.11.1934 PubMedCrossRefGoogle Scholar
  33. 33.
    Rowe DE, Bernstein SM, Riddick MF, Adler F, Emans JB, Gardner-Bonneau D (1997) A meta-analysis of the efficacy of non-operative treatments for idiopathic scoliosis. J Bone Joint Surg Am 79:664–674PubMedGoogle Scholar
  34. 34.
    Shea KG, Ford T, Bloebaum RD, D’Astous J, King H (2004) A comparison of the microarchitectural bone adaptations of the concave and convex thoracic spinal facets in idiopathic scoliosis. J Bone Joint Surg Am 86:1000–1006PubMedGoogle Scholar
  35. 35.
    Skedros JG, Mason MW, Bloebaum RD (1994) Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: indications of potential strain-specific differences in bone microstructure. Anat Rec 239:405–413. doi:10.1002/ar.1092390407 PubMedCrossRefGoogle Scholar
  36. 36.
    Skedros JG, Sorenson SM, Takano Y, Turner CH (2006) Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei. Bone 39:143–151. doi:10.1016/j.bone.2005.12.007 PubMedCrossRefGoogle Scholar
  37. 37.
    Snyder BD, Katz DA, Myers ER, Breitenbach MA, Emans JB (2005) Bone density accumulation is not affected by brace treatment of idiopathic scoliosis in adolescent girls. J Pediatr Orthop 25:423–428. doi:10.1097/01.bpo.0000158001.23177.8d PubMedCrossRefGoogle Scholar
  38. 38.
    Snyder BD, Zaltz I, Breitenbach MA, Kido TH, Myers ER, Emans JB (1995) Does bracing affect bone density in adolescent scoliosis? Spine 20:1554–1560PubMedCrossRefGoogle Scholar
  39. 39.
    Stilwell DL Jr (1962) Structural deformities of vertebrae. Bone adaptation and modeling in experimental scoliosis and kyphosis. J Bone Joint Surg Am 44:611–634PubMedGoogle Scholar
  40. 40.
    Sun X, Qiu Y, Zhu Z (2006) The accumulation of bone mineral content and density in idiopathic scoliotic adolescents treated with bracing. Stud Health Technol Inform 123:233–238PubMedGoogle Scholar
  41. 41.
    Thomas KA, Cook SD, Skalley TC, Renshaw SV, Makuch RS, Gross M et al (1992) Lumbar spine and femoral neck bone mineral density in idiopathic scoliosis: a follow-up study. J Pediatr Orthop 12:235–240PubMedGoogle Scholar
  42. 42.
    Uusitalo H, Rantakokko J, Vuorio E, Aro HT (2005) Bone defect repair in immobilization-induced osteopenia: a pQCT, biomechanical, and molecular biologic study in the mouse femur. Bone 36:142–149. doi:10.1016/j.bone.2004.09.010 PubMedCrossRefGoogle Scholar
  43. 43.
    Velis KP, Healey JH, Schneider R (1988) Osteoporosis in unstable adult scoliosis. Clin Orthop Relat Res 237:132–141PubMedGoogle Scholar
  44. 44.
    Velis KP, Healey JH, Schneider R (1989) Peak skeletal mass assessment in young adults with idiopathic scoliosis. Spine 14:706–711. doi:10.1097/00007632-198907000-00010 PubMedCrossRefGoogle Scholar
  45. 45.
    Willner S (1984) Prevalence study of trunk asymmetries and structural scoliosis in 10 year old school children. Spine 9:644–647. doi:10.1097/00007632-198409000-00017 PubMedCrossRefGoogle Scholar
  46. 46.
    Wolff J (1892) Das Gesetz der Transformation der Knochen. August Hirschwald, BerlinGoogle Scholar
  47. 47.
    Writing Group for the ISCD Position Development Conference (2004) Diagnosis of osteoporosis in men, premenopausal women, and children. J Clin Densitom 7:17–26CrossRefGoogle Scholar
  48. 48.
    Yeung HY, Qin L, Hung VW, Lee KM, Guo X, Ng BW et al (2006) Lower degree of mineralization found in cortical bone of adolescent idiopathic scoliosis (AIS). Stud Health Technol Inform 123:599–604PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Orthopaedic Surgery, Xinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
  2. 2.Department of Orthopaedic Surgery, Renji HospitalShanghai Jiaotong University School of MedicineShanghaiChina

Personalised recommendations