European Spine Journal

, Volume 17, Supplement 4, pp 480–491 | Cite as

Tissue engineering and the intervertebral disc: the challenges

Review

Abstract

Disc degeneration is a common disorder. Although the back pain that can develop in association with this is rarely life-threatening, the annual cost in terms of morbidity, lost productivity, medical expenses and workers’ compensation benefits is significant. Surgical intervention as practised currently is directed towards removing the damaged or altered tissue. Development of new treatment modalities is critical as there is a growing consensus that the strategies used currently for symptomatic degenerative disc disease may not be effective. Accordingly, there is a need to develop an entirely new way to treat this disorder; regenerative medicine and tissue engineering approaches appear particularly promising in this regard. This paper reviews some of the challenges that currently are limiting the clinical application of this approach to the treatment of disc degeneration.

Keywords

Tissue engineering Intervertebral disc Implantation Review 

Notes

Acknowledgments

This work was supported by EU “MyJoint” (FP6: 28861(NEST)) (SR and JU) and CIHR and NIHR21 (RK). We thank Godfrey Chang for his help in preparing Fig. 1 and Andy Biggs for Fig. 2.

Conflict of interest statement

None of the authors has any potential conflict of interest.

References

  1. 1.
    Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31(18):2151–2161PubMedCrossRefGoogle Scholar
  2. 2.
    Agrawal A, Guttapalli A, Narayan S, Albert TJ, Shapiro IM, Risbud MV (2007) Normoxic stabilization of HIF-1alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am J Physiol Cell Physiol 293(2):C621–C631PubMedCrossRefGoogle Scholar
  3. 3.
    Aguiar DJ, Johnson SL, Oegema TR (1999) Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res 246(1):129–137PubMedCrossRefGoogle Scholar
  4. 4.
    Ahmed N, Stanford WL, Kandel RA (2007) Mesenchymal stem and progenitor cells for cartilage repair. Skeletal Radiol 36(10):909–912PubMedCrossRefGoogle Scholar
  5. 5.
    Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K et al (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17(1):2–19PubMedCrossRefGoogle Scholar
  6. 6.
    Anderson DG, Risbud MV, Shapiro IM, Vaccaro AR, Albert TJ (2005) Cell-based therapy for disc repair. Spine J 5(6 Suppl):297S–303SPubMedCrossRefGoogle Scholar
  7. 7.
    Bajada S, Harrison PE, Ashton BA, Cassar-Pullicino VN, Ashammakhi N, Richardson JB (2007) Successful treatment of refractory tibial nonunion using calcium sulphate and bone marrow stromal cell implantation. J Bone Joint Surg Br 89(10):1382–1386PubMedCrossRefGoogle Scholar
  8. 8.
    Bartels EM, Fairbank JC, Winlove CP, Urban JP (1998) Oxygen and lactate concentrations measured in vivo in the intervertebral discs of patients with scoliosis and back pain. Spine 23(1):1–7PubMedCrossRefGoogle Scholar
  9. 9.
    Bashur CA, Dahlgren LA, Goldstein AS (2006) Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(d, l-lactic-co-glycolic acid) meshes. Biomaterials 27(33):5681–5688PubMedCrossRefGoogle Scholar
  10. 10.
    Battie MC, Videman T (2006) Lumbar disc degeneration: epidemiology and genetics. J Bone Joint Surg Am 88(Suppl 2):3–9PubMedCrossRefGoogle Scholar
  11. 11.
    Benneker LM, Heini PF, Alini M, Anderson SE, Ito K (2005) 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 30(2):167–173PubMedCrossRefGoogle Scholar
  12. 12.
    Bibby SR, Fairbank JC, Urban MR, Urban JP (2002) Cell viability in scoliotic discs in relation to disc deformity and nutrient levels. Spine 27(20):2220–2228PubMedCrossRefGoogle Scholar
  13. 13.
    Bibby SR, Jones DA, Ripley RM, Urban JP (2005) Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine 30(5):487–496PubMedCrossRefGoogle Scholar
  14. 14.
    Bibby SR, Urban JP (2004) Effect of nutrient deprivation on the viability of intervertebral disc cells. Eur Spine J 13(8):695–701PubMedCrossRefGoogle Scholar
  15. 15.
    Bieback K, Kern S, Kocaomer A, Ferlik K, Bugert P (2008) Comparing mesenchymal stromal cells from different human tissues: bone marrow, adipose tissue and umbilical cord blood. Biomed Mater Eng 18(1 Suppl):S71–S76PubMedGoogle Scholar
  16. 16.
    Boden SD (2002) Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine 27(16 Suppl 1):S26–S31PubMedCrossRefGoogle Scholar
  17. 17.
    Bogduk N (1997) The inter-body joints and the intervertebral discs. In: Bogduk N (ed) Clinical anatomy of the lumbar spine and sarcum. Churchill Livingstone, New York, pp 13–31Google Scholar
  18. 18.
    Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG (2002) Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 27(23):2631–2644PubMedCrossRefGoogle Scholar
  19. 19.
    Brisby H, Tao H, Ma DD, Diwan AD (2004) Cell therapy for disc degeneration—potentials and pitfalls. Orthop Clin North Am 35(1):85–93PubMedCrossRefGoogle Scholar
  20. 20.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895PubMedCrossRefGoogle Scholar
  21. 21.
    Chang G, Kim HJ, Kaplan D, Vunjak-Novakovic G, Kandel RA (2007) Porous silk scaffolds can be used for tissue engineering annulus fibrosus. Eur Spine J 16(11):1848–1857PubMedCrossRefGoogle Scholar
  22. 22.
    Chang NK, Jeong YY, Park JS, Jeong HS, Jang S, Jang MJ et al (2008) Tracking of neural stem cells in rats with intracerebral hemorrhage by the use of 3T MRI. Korean J Radiol 9(3):196–204PubMedGoogle Scholar
  23. 23.
    Chen J, Yan W, Setton LA (2006) Molecular phenotypes of notochordal cells purified from immature nucleus pulposus. Eur Spine J 15(Suppl 3):S303–S311PubMedCrossRefGoogle Scholar
  24. 24.
    Chen M, Patra PK, Warner SB, Bhowmick S (2007) Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Eng 13(3):579–587PubMedCrossRefGoogle Scholar
  25. 25.
    Elliott DM, Yerramalli CS, Beckstein JC, Boxberger JI, Johannessen W, Vresilovic EJ (2008) The effect of relative needle diameter in puncture and sham injection animal models of degeneration. Spine 33(6):588–596PubMedGoogle Scholar
  26. 26.
    Frick SL, Hanley EN Jr, Meyer RA Jr, Ramp WK, Chapman TM (1994) Lumbar intervertebral disc transfer. A canine study. Spine 19(16):1826–1834PubMedCrossRefGoogle Scholar
  27. 27.
    Frymoyer JW, Cats-Baril WL (1991) An overview of the incidences and costs of low back pain. Orthop Clin North Am 22(2):263–271PubMedGoogle Scholar
  28. 28.
    Garvin PJ, Jennings RB, Smith L, Gesler RM (1965) Chymopapain: a pharmacologic and toxicologic evaluation in experimental animals. Clin Orthop Relat Res 41:204–223PubMedCrossRefGoogle Scholar
  29. 29.
    Gold GE, Beaulieu CF (2001) Future of MR imaging of articular cartilage. Semin Musculoskelet Radiol 5(4):313–327PubMedCrossRefGoogle Scholar
  30. 30.
    Gruber HE, Hanley EN Jr (1998) Analysis of aging and degeneration of the human intervertebral disc. Comparison of surgical specimens with normal controls. Spine 23(7):751–757PubMedCrossRefGoogle Scholar
  31. 31.
    Gruber HE, Ingram JA, Davis DE, Hanley EN Jr (2008) Increased cell senescence is associated with decreased cell proliferation in vivo in the degenerating human annulus. Spine J (in press)Google Scholar
  32. 32.
    Gruber HE, Johnson TL, Leslie K, Ingram JA, Martin D, Hoelscher G et al (2002) Autologous intervertebral disc cell implantation: a model using Psammomys obesus, the sand rat. Spine 27(15):1626–1633PubMedCrossRefGoogle Scholar
  33. 33.
    Gruber HE, Leslie K, Ingram J, Norton HJ, Hanley EN (2004) Cell-based tissue engineering for the intervertebral disc: in vitro studies of human disc cell gene expression and matrix production within selected cell carriers. Spine J 4(1):44–55PubMedCrossRefGoogle Scholar
  34. 34.
    Grunhagen T, Wilde G, Soukane DM, Shirazi-Adl SA, Urban JP (2006) Nutrient supply and intervertebral disc metabolism. J Bone Joint Surg Am 88(Suppl 2):30–35PubMedCrossRefGoogle Scholar
  35. 35.
    Halloran DO, Grad S, Stoddart M, Dockery P, Alini M, Pandit AS (2008) An injectable cross-linked scaffold for nucleus pulposus regeneration. Biomaterials 29(4):438–447PubMedCrossRefGoogle Scholar
  36. 36.
    Hamilton DJ, Seguin CA, Wang J, Pilliar RM, Kandel RA (2006) Formation of a nucleus pulposus-cartilage endplate construct in vitro. Biomaterials 27(3):397–405PubMedCrossRefGoogle Scholar
  37. 37.
    Harrison PE, Ashton IK, Johnson WE, Turner SL, Richardson JB, Ashton BA (2000) The in vitro growth of human chondrocytes. Cell Tissue Bank 1(4):255–260PubMedCrossRefGoogle Scholar
  38. 38.
    Haufe SM, Mork AR (2006) Intradiscal injection of hematopoietic stem cells in an attempt to rejuvenate the intervertebral discs. Stem Cells Dev 15(1):136–137PubMedCrossRefGoogle Scholar
  39. 39.
    Hiyama A, Mochida J, Iwashina T, Omi H, Watanabe T, Serigano K et al (2008) Transplantation of mesenchymal stem cells in a canine disc degeneration model. J Orthop Res 26(5):589–600PubMedCrossRefGoogle Scholar
  40. 40.
    Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A (1981) Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 8(2):101–119PubMedCrossRefGoogle Scholar
  41. 41.
    Horner HA, Roberts S, Bielby RC, Menage J, Evans H, Urban JP (2002) Cells from different regions of the intervertebral disc: effect of culture system on matrix expression and cell phenotype. Spine 27(10):1018–1028PubMedCrossRefGoogle Scholar
  42. 42.
    Horner HA, Urban JP (2001) 2001 Volvo Award Winner in Basic Science Studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine 26(23):2543–2549PubMedCrossRefGoogle Scholar
  43. 43.
    Hukins DW (1988) Disc structure and function. In: Ghosh P (ed) Biology of intervertebral disc. CRC Press, Boca Raton, pp 2–37Google Scholar
  44. 44.
    Hunter CJ, Matyas JR, Duncan NA (2003) The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng 9(4):667–677PubMedCrossRefGoogle Scholar
  45. 45.
    Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3(10):589–601PubMedCrossRefGoogle Scholar
  46. 46.
    Iron KS, Manuel DG, Williams J (2004) Using a linked data set to determine the factors associated with utilization and costs of family physician services in Ontario: effects of self-reported chronic conditions. Chronic Dis Can 24(4):124–132Google Scholar
  47. 47.
    Ishihara H, Urban JP (1999) Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J Orthop Res 17(6):829–835PubMedCrossRefGoogle Scholar
  48. 48.
    Javedan SP, Dickman CA (1999) Cause of adjacent-segment disease after spinal fusion. Lancet 354(9178):530–531PubMedCrossRefGoogle Scholar
  49. 49.
    Johannessen W, Auerbach JD, Wheaton AJ, Kurji A, Borthakur A, Reddy R et al (2006) Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging. Spine 31(11):1253–1257PubMedCrossRefGoogle Scholar
  50. 50.
    Kalichman L, Hunter DJ (2007) Lumbar facet joint osteoarthritis: a review. Semin Arthritis Rheum 37(2):69–80PubMedCrossRefGoogle Scholar
  51. 51.
    Kandel RA, Grynpas M, Pilliar R, Lee J, Wang J, Waldman S et al (2006) Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model. Biomaterials 27(22):4120–4131PubMedCrossRefGoogle Scholar
  52. 52.
    Kandel RA, Hamilton D, Seguin C, Li SQ, Arana C, Pilliar R (2007) An in vitro tissue model to study the effect of age on nucleus pulposus cells. Eur Spine J 16(12):2166–2173PubMedCrossRefGoogle Scholar
  53. 53.
    Kim PK, Branch CL Jr (2006) The lumbar degenerative disc: confusion, mechanics, management. Clin Neurosurg 53:18–25PubMedGoogle Scholar
  54. 54.
    Korecki CL, Costi JJ, Iatridis JC (2008) Needle puncture injury affects intervertebral disc mechanics and biology in an organ culture model. Spine 33(3):235–241PubMedCrossRefGoogle Scholar
  55. 55.
    Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR (2007) Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 213(1):18–26PubMedCrossRefGoogle Scholar
  56. 56.
    Le Maitre CL, Hoyland JA, Freemont AJ (2007) Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res Ther 9(4):R77PubMedCrossRefGoogle Scholar
  57. 57.
    Le VC, Kim SW, Tateno K, Sieber AN, Kostuik JP, Leong KW (2006) Interaction of human mesenchymal stem cells with disc cells: changes in extracellular matrix biosynthesis. Spine 31(18):2036–2042CrossRefGoogle Scholar
  58. 58.
    Lee CR, Sakai D, Nakai T, Toyama K, Mochida J, Alini M et al (2007) A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat. Eur Spine J 16(12):2174–2185PubMedCrossRefGoogle Scholar
  59. 59.
    Lee P (1994) The economic impact of musculoskeletal disorders. Qual Life Res 3(Suppl 1):S85–S91PubMedCrossRefGoogle Scholar
  60. 60.
    Li WJ, Jiang YJ, Tuan RS (2006) Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng 12(7):1775–1785PubMedCrossRefGoogle Scholar
  61. 61.
    Luk KD, Ruan DK, Chow DH, Leong JC (1997) Intervertebral disc autografting in a bipedal animal model. Clin Orthop Relat Res 337:13–26PubMedCrossRefGoogle Scholar
  62. 62.
    Mani V, Adler E, Briley-Saebo KC, Bystrup A, Fuster V, Keller G et al (2008) Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med 60(1):73–81PubMedCrossRefGoogle Scholar
  63. 63.
    Masuda K, Aota Y, Muehleman C, Imai Y, Okuma M, Thonar EJ et al (2005) A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 30(1):5–14PubMedGoogle Scholar
  64. 64.
    Masuda K, Imai Y, Okuma M, Muehleman C, Nakagawa K, Akeda K et al (2006) Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model. Spine 31(7):742–754PubMedCrossRefGoogle Scholar
  65. 65.
    Meisel HJ, Siodla V, Ganey TM, Minkus Y, Hutton WC, Alasevic OJ (2007) Clinical experience in cell-based therapeutics: disc chondrocyte transplantation. A treatment for degenerated or damaged intervertebral disc. Biomol Eng 24(1):5–21PubMedCrossRefGoogle Scholar
  66. 66.
    Melrose J, Roberts S, Smith S, Menage J, Ghosh P (2002) Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine 27(12):1278–1285PubMedCrossRefGoogle Scholar
  67. 67.
    Menezes NM, Gray ML, Hartke JR, Burstein D (2004) T2 and T1rho MRI in articular cartilage systems. Magn Reson Med 51(3):503–509PubMedCrossRefGoogle Scholar
  68. 68.
    Mignotte F, Champagne AM, Froger-Gaillard B, Benel L, Gueride M, Adolphe M et al (1991) Mitochondrial biogenesis in rabbit articular chondrocytes transferred to culture. Biol Cell 71(1–2):67–72PubMedCrossRefGoogle Scholar
  69. 69.
    Miller JA, Schmatz C, Schultz AB (1988) Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. Spine 13(2):173–178PubMedCrossRefGoogle Scholar
  70. 70.
    Mirza SK, Deyo RA (2007) Systematic review of randomized trials comparing lumbar fusion surgery to nonoperative care for treatment of chronic back pain. Spine 32(7):816–823PubMedCrossRefGoogle Scholar
  71. 71.
    Mizuno H, Roy AK, Vacanti CA, Kojima K, Ueda M, Bonassar LJ (2004) Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement. Spine 29(12):1290–1297PubMedCrossRefGoogle Scholar
  72. 72.
    Mizuno H, Roy AK, Zaporojan V, Vacanti CA, Ueda M, Bonassar LJ (2006) Biomechanical and biochemical characterization of composite tissue-engineered intervertebral discs. Biomaterials 27(3):362–370PubMedCrossRefGoogle Scholar
  73. 73.
    Nachemson A (1960) Lumbar intradiscal pressure. Experimental studies on post-mortem material. Acta Orthop Scand Suppl 43:1–104PubMedGoogle Scholar
  74. 74.
    Nachemson A, Lewin T, Maroudas A, Freeman MA (1970) In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop Scand 41(6):589–607PubMedCrossRefGoogle Scholar
  75. 75.
    Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106PubMedCrossRefGoogle Scholar
  76. 76.
    Nerurkar NL, Elliott DM, Mauck RL (2007) Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res 25(8):1018–1028PubMedCrossRefGoogle Scholar
  77. 77.
    Nomura T, Mochida J, Okuma M, Nishimura K, Sakabe K (2001) Nucleus pulposus allograft retards intervertebral disc degeneration. Clin Orthop Relat Res 389:94–101PubMedCrossRefGoogle Scholar
  78. 78.
    O’halloran DM, Pandit AS (2007) Tissue-engineering approach to regenerating the intervertebral disc. Tissue Eng 13(8):1927PubMedCrossRefGoogle Scholar
  79. 79.
    Okuda S, Iwasaki M, Miyauchi A, Aono H, Morita M, Yamamoto T (2004) Risk factors for adjacent segment degeneration after PLIF. Spine 29(14):1535–1540PubMedCrossRefGoogle Scholar
  80. 80.
    Okuma M, Mochida J, Nishimura K, Sakabe K, Seiki K (2000) Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration: an in vitro and in vivo experimental study. J Orthop Res 18(6):988–997PubMedCrossRefGoogle Scholar
  81. 81.
    Olson EJ, Hanley EN Jr, Rudert MJ, Baratz ME (1991) Vertebral column allografts for the treatment of segmental spine defects. An experimental investigation in dogs. Spine 16(9):1081–1088PubMedCrossRefGoogle Scholar
  82. 82.
    Pezowicz CA, Robertson PA, Broom ND (2006) The structural basis of interlamellar cohesion in the intervertebral disc wall. J Anat 208(3):317–330PubMedCrossRefGoogle Scholar
  83. 83.
    Putzier M, Schneider SV, Funk JF, Tohtz SW, Perka C (2005) The surgical treatment of the lumbar disc prolapse: nucleotomy with additional transpedicular dynamic stabilization versus nucleotomy alone. Spine 30(5):E109–E114PubMedCrossRefGoogle Scholar
  84. 84.
    Rajasekaran S, Babu JN, Arun R, Armstrong BR, Shetty AP, Murugan S (2004) ISSLS prize winner: a study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine 29(23):2654–2667PubMedCrossRefGoogle Scholar
  85. 85.
    Rajpurohit R, Risbud MV, Ducheyne P, Vresilovic EJ, Shapiro IM (2002) Phenotypic characteristics of the nucleus pulposus: expression of hypoxia inducing factor-1, glucose transporter-1 and MMP-2. Cell Tissue Res 308(3):401–407PubMedCrossRefGoogle Scholar
  86. 86.
    Rapoport J, Jacobs P, Bell NR, Klarenbach S (2004) Refining the measurement of the economic burden of chronic diseases in Canada. Chronic Dis Can 24(4):13–21Google Scholar
  87. 87.
    Ray CD (2002) The PDN prosthetic disc-nucleus device. Eur Spine J 11(Suppl 2):S137–S142PubMedGoogle Scholar
  88. 88.
    Razaq S, Wilkins RJ, Urban JP (2003) The effect of extracellular pH on matrix turnover by cells of the bovine nucleus pulposus. Eur Spine J 12(4):341–349PubMedCrossRefGoogle Scholar
  89. 89.
    Richardson SM, Mobasheri A, Freemont AJ, Hoyland JA (2007) Intervertebral disc biology, degeneration and novel tissue engineering and regenerative medicine therapies. Histol Histopathol 22(9):1033–1041PubMedGoogle Scholar
  90. 90.
    Richardson SM, Walker RV, Parker S, Rhodes NP, Hunt JA, Freemont AJ et al (2006) Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells 24(3):707–716PubMedCrossRefGoogle Scholar
  91. 91.
    Risbud MV, Albert TJ, Guttapalli A, Vresilovic EJ, Hillibrand AS, Vaccaro AR et al (2004) Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy. Spine 29(23):2627–2632PubMedCrossRefGoogle Scholar
  92. 92.
    Roberts S, Evans EH, Kletsas D, Jaffray DC, Eisenstein SM (2006) Senescence in human intervertebral discs. Eur Spine J 15(Suppl 3):S312–S316PubMedCrossRefGoogle Scholar
  93. 93.
    Roberts S, Evans H, Trivedi J, Menage J (2006) Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 88(Suppl 2):10–14PubMedCrossRefGoogle Scholar
  94. 94.
    Roughley P, Hoemann C, DesRosiers E, Mwale F, Antoniou J, Alini M (2006) The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials 27(3):388–396PubMedCrossRefGoogle Scholar
  95. 95.
    Ruan D, He Q, Ding Y, Hou L, Li J, Luk KD (2007) Intervertebral disc transplantation in the treatment of degenerative spine disease: a preliminary study. Lancet 369(9566):993–999PubMedCrossRefGoogle Scholar
  96. 96.
    Sahlman J, Inkinen R, Hirvonen T, Lammi MJ, Lammi PE, Nieminen J et al (2001) Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the Col2a1 gene for Type II collagen. Spine 26(23):2558–2565PubMedCrossRefGoogle Scholar
  97. 97.
    Sakai D, Mochida J, Iwashina T, Hiyama A, Omi H, Imai M et al (2006) Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials 27(3):335–345PubMedCrossRefGoogle Scholar
  98. 98.
    Sakai D, Mochida J, Iwashina T, Watanabe T, Nakai T, Ando K et al (2005) Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine 30(21):2379–2387PubMedCrossRefGoogle Scholar
  99. 99.
    Sato M, Asazuma T, Ishihara M, Ishihara M, Kikuchi T, Kikuchi M et al (2003) An experimental study of the regeneration of the intervertebral disc with an allograft of cultured annulus fibrosus cells using a tissue-engineering method. Spine 28(6):548–553PubMedCrossRefGoogle Scholar
  100. 100.
    Schallmoser K, Bartmann C, Rohde E, Reinisch A, Kashofer K, Stadelmeyer E et al (2007) Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion 47(8):1436–1446PubMedCrossRefGoogle Scholar
  101. 101.
    Seguin CA, Grynpas MD, Pilliar RM, Waldman SD, Kandel RA (2004) Tissue engineered nucleus pulposus tissue formed on a porous calcium polyphosphate substrate. Spine 29(12):1299–1306PubMedCrossRefGoogle Scholar
  102. 102.
    Shahdadfar A, Fronsdal K, Haug T, Reinholt FP, Brinchmann JE (2005) In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 23(9):1357–1366PubMedCrossRefGoogle Scholar
  103. 103.
    Shim CS, Lee SH, Shin HD, Kang HS, Choi WC, Jung B et al (2007) CHARITE versus ProDisc: a comparative study of a minimum 3-year follow-up. Spine 32(9):1012–1018PubMedCrossRefGoogle Scholar
  104. 104.
    Simon SR et al (1994) Kinesiology. In: Simon SR (ed) Orthopedic Basic Science. Am Academy of Orthopedic Surgeons, USA, pp 558–68Google Scholar
  105. 105.
    Sivan SS, Tsitron E, Wachtel E, Roughley P, Sakkee N, van der Ham F et al (2006) Age-related accumulation of pentosidine in aggrecan and collagen from normal and degenerate human intervertebral discs. Biochem J 399(1):29–35PubMedCrossRefGoogle Scholar
  106. 106.
    Sivan SS, Wachtel E, Tsitron E, Sakkee N, van der Ham F, Degroot J et al (2008) Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J Biol Chem 283(14):8796–8801PubMedCrossRefGoogle Scholar
  107. 107.
    So K, Takemoto M, Fujibayashi S, Neo M, Kyomoto M, Hayami T et al (2007) Antidegenerative effects of partial disc replacement in an animal surgery model. Spine 32(15):1586–1591PubMedCrossRefGoogle Scholar
  108. 108.
    Sobajima S, Vadala G, Shimer A, Kim JS, Gilbertson LG, Kang JD (2007) Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J (in press)Google Scholar
  109. 109.
    Solovieva S, Lohiniva J, Leino-Arjas P, Raininko R, Luoma K, la-Kokko L et al (2002) COL9A3 gene polymorphism and obesity in intervertebral disc degeneration of the lumbar spine: evidence of gene-environment interaction. Spine 27(23):2691–2696PubMedCrossRefGoogle Scholar
  110. 110.
    Stairmand JW, Holm S, Urban JP (1991) Factors influencing oxygen concentration gradients in the intervertebral disc. A theoretical analysis. Spine 16(4):444–449PubMedCrossRefGoogle Scholar
  111. 111.
    Steck E, Bertram H, Abel R, Chen B, Winter A, Richter W (2005) Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells 23(3):403–411PubMedCrossRefGoogle Scholar
  112. 112.
    Sun Y, Hurtig M, Pilliar RM, Grynpas M, Kandel RA (2001) Characterization of nucleus pulposus-like tissue formed in vitro. J Orthop Res 19(6):1078–1084PubMedCrossRefGoogle Scholar
  113. 113.
    Sutton EJ, Henning TD, Pichler BJ, Bremer C, drup-Link HE (2008) Cell tracking with optical imaging. Eur Radiol 18(10):2021–2032Google Scholar
  114. 114.
    Trout JJ, Buckwalter JA, Moore KC, Landas SK (1982) Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age. Tissue Cell 14(2):359–369PubMedCrossRefGoogle Scholar
  115. 115.
    Urban JP, Roberts S (2003) Degeneration of the intervertebral disc. Arthritis Res Ther 5(3):120–130PubMedCrossRefGoogle Scholar
  116. 116.
    Urban JP, Smith S, Fairbank JC (2004) Nutrition of the intervertebral disc. Spine 29(23):2700–2709PubMedCrossRefGoogle Scholar
  117. 117.
    Urban MR, Fairbank JC, Bibby SR, Urban JP (2001) Intervertebral disc composition in neuromuscular scoliosis: changes in cell density and glycosaminoglycan concentration at the curve apex. Spine 26(6):610–617PubMedCrossRefGoogle Scholar
  118. 118.
    Vadala G, Studer RK, Sowa G, Spiezia F, Iucu C, Denaro V et al (2008) Coculture of bone marrow mesenchymal stem cells and nucleus pulposus cells modulate gene expression profile without cell fusion. Spine 33(8):870–876PubMedCrossRefGoogle Scholar
  119. 119.
    Vernengo J, Fussell GW, Smith NG, Lowman AM (2007) Evaluation of novel injectable hydrogels for nucleus pulposus replacement. J Biomed Mater Res B Appl Biomater 84(1):64–69Google Scholar
  120. 120.
    Virtanen IM, Karppinen J, Taimela S, Ott J, Barral S, Kaikkonen K et al (2007) Occupational and genetic risk factors associated with intervertebral disc disease. Spine 32(10):1129–1134PubMedCrossRefGoogle Scholar
  121. 121.
    Waldman SD, Grynpas MD, Pilliar RM, Kandel RA (2002) Characterization of cartilagenous tissue formed on calcium polyphosphate substrates in vitro. J Biomed Mater Res 62(3):323–330PubMedCrossRefGoogle Scholar
  122. 122.
    Wang Y, Huso DL, Harrington J, Kellner J, Jeong DK, Turney J et al (2005) Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 7(6):509–519PubMedCrossRefGoogle Scholar
  123. 123.
    Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24(8):755–762PubMedCrossRefGoogle Scholar
  124. 124.
    Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1(1):39–49PubMedCrossRefGoogle Scholar
  125. 125.
    Zhang YG, Guo X, Xu P, Kang LL, Li J (2005) Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans. Clin Orthop Relat Res 430:219–226PubMedCrossRefGoogle Scholar
  126. 126.
    Zigler J, Delamarter R, Spivak JM, Linovitz RJ, Danielson GOIII, Haider TT et al (2007) Results of the prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of the ProDisc-L total disc replacement versus circumferential fusion for the treatment of 1-level degenerative disc disease. Spine 32(11):1155–1162PubMedCrossRefGoogle Scholar
  127. 127.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Rita Kandel
    • 1
  • Sally Roberts
    • 2
  • Jill P. G. Urban
    • 3
  1. 1.CIHR-Bioengineering of Skeletal Tissues TeamMount Sinai HospitalTorontoCanada
  2. 2.Centre for Spinal Studies and ISTMKeele University, Robert Jones and Agnes Hunt Orthopaedic HospitalOswestryUK
  3. 3.Department of Physiology, Anatomy and Genetics, Le Gros Clark BuildingOxford UniversityOxfordUK

Personalised recommendations