European Spine Journal

, Volume 17, Supplement 4, pp 467–479 | Cite as

Scaffolding in tissue engineering: general approaches and tissue-specific considerations

  • B. P. ChanEmail author
  • K. W. Leong


Scaffolds represent important components for tissue engineering. However, researchers often encounter an enormous variety of choices when selecting scaffolds for tissue engineering. This paper aims to review the functions of scaffolds and the major scaffolding approaches as important guidelines for selecting scaffolds and discuss the tissue-specific considerations for scaffolding, using intervertebral disc as an example.


Tissue engineering Scaffolding Scaffolds Biomaterials Intervertebral disc 



This work was supported by grant from AOSpine to Leong and Chan (AOSBRC-07-06), support from NIH (EB003447) to Leong, and grants from Research Grant Council (RGC), Innovation and Technology Commission (ITC) of the Hong Kong Government to Chan.

Conflict of interest statement

None of the authors has any potential conflict of interest.


  1. 1.
    Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31(18):2151–2161PubMedCrossRefGoogle Scholar
  2. 2.
    Alini M, Li W, Markovic P, Aebi M, Spiro RC, Roughley PJ (2003) The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine 28(5):446–454PubMedCrossRefGoogle Scholar
  3. 3.
    Alini M, Roughley PJ, Antoniou J, Stoll T, Aebi M (2002) A biological approach to treating disc degeneration: not for today, but maybe for tomorrow. Eur Spine J 11(Suppl 2):S215–S220PubMedGoogle Scholar
  4. 4.
    Allan KS, Pilliar RM, Wang J, Grynpas MD, Kandel RA (2007) Formation of biphasic constructs containing cartilage with a calcified zone interface. Tissue Eng 13(1):167–177PubMedCrossRefGoogle Scholar
  5. 5.
    Allers C, Sierralta WD, Neubauer S, Rivera F, Minguell JJ, Conget PA (2004) Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice. Transplantation 78(4):503–508PubMedCrossRefGoogle Scholar
  6. 6.
    Anderson DG, Risbud MV, Shapiro IM, Vaccaro AR, Albert TJ (2005) Cell-based therapy for disc repair. Spine J 5(6 Suppl):297S–303SPubMedCrossRefGoogle Scholar
  7. 7.
    Ansaloni L, Cambrini P, Catena F, Di Saverio S, Gagliardi S, Gazzotti F, Hodde JP, Metzger DW, D’Alessandro L, Pinna AD (2007) Immune response to small intestinal submucosa (surgisis) implant in humans: preliminary observations. J Invest Surg 20(4):237–241PubMedCrossRefGoogle Scholar
  8. 8.
    Ansaloni L, Catena F, Gagliardi S, Gazzotti F, D’Alessandro L, Pinna AD (2007) Hernia repair with porcine small-intestinal submucosa. Hernia 11(4):321–326PubMedCrossRefGoogle Scholar
  9. 9.
    Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12(3–4):367–377PubMedCrossRefGoogle Scholar
  10. 10.
    Batorsky A, Liao J, Lund AW, Plopper GE, Stegemann JP (2005) Encapsulation of adult human mesenchymal stem cells within collagen-agarose microenvironments. Biotechnol Bioeng 92(4):492–500PubMedCrossRefGoogle Scholar
  11. 11.
    Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57(1):19–34PubMedCrossRefGoogle Scholar
  12. 12.
    Bibby SR, Jones DA, Lee RB, Yu J, Urban JPG (2001) The pathophysiology of the intervertebral disc. Joint Bone Spine 68(6):537–542PubMedCrossRefGoogle Scholar
  13. 13.
    Bissell DM, Choun MO (1988) The role of extracellular matrix in normal liver. Scand J Gastroenterol Suppl 151:1–7PubMedCrossRefGoogle Scholar
  14. 14.
    Boccaccini AR, Blaker JJ (2005) Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices 2(3):303–317PubMedCrossRefGoogle Scholar
  15. 15.
    Borschel GH, Huang YC, Calve S, Arruda EM, Lynch JB, Dow DE, Kuzon WM, Dennis RG, Brown DL (2005) Tissue engineering of recellularized small-diameter vascular grafts. Tissue Eng 11(5–6):778–786PubMedCrossRefGoogle Scholar
  16. 16.
    Brodie JC, Goldie E, Connel G, Merry J, Grant MH (2005) Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen. J Biomed Mater Res A 73(4):409–421PubMedGoogle Scholar
  17. 17.
    Broom ND, Poole CA (1982) A functional-morphological study of the tidemark region of articular cartilage maintained in a non-viable physiological condition. J Anat 135(Pt 1):65–82PubMedGoogle Scholar
  18. 18.
    Chai C, Leong KW (2007) Biomaterials approach to expand and direct differentiation of stem cells. Mol Ther 15(3):467–480PubMedCrossRefGoogle Scholar
  19. 19.
    Chan BP, Chan GCF, Wong HL, Cheung PT, Chan D, Cheah K (2007b) Cell–Matrix Microsphere, Associated Products, Methods for Preparation and Applications. Regular Patent Application No. 60/801,975 (filed on 19 May 2007)Google Scholar
  20. 20.
    Chan BP, Hui TY, Chan OC, So KF, Lu W, Cheung KM, Salomatina E, Yaroslavsky A (2007) Photochemical cross-linking for collagen-based scaffolds: a study on optical properties, mechanical properties, stability, and hematocompatibility. Tissue Eng 13(1):73–85PubMedCrossRefGoogle Scholar
  21. 21.
    Chan BP, Hui TY, Yeung CW, Li J, Mo I, Chan GCF (2007) Self-assembled collagen–human mesenchymal stem cell microspheres for regenerative medicine. Biomaterials 28:4652–4666PubMedCrossRefGoogle Scholar
  22. 22.
    Chan BP, So K-F (2005) Photochemical crosslinking improves the physicochemical properties of collagen scaffolds. J Biomed Mater Res A 75(3):689–701PubMedGoogle Scholar
  23. 23.
    Chang G, Kim HJ, Kaplan D, Vunjak-Novakovic G, Kandel RA (2007) Porous silk scaffolds can be used for tissue engineering annulus fibrosus. Eur Spine J 16(11):1848–1857PubMedCrossRefGoogle Scholar
  24. 24.
    Chang TM (1992) Hybrid artificial cells: microencapsulation of living cells. ASAIO J 38(2):128–130PubMedCrossRefGoogle Scholar
  25. 25.
    Chevalier E, Chulia D, Pouget C, Viana M (2008) Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field. J Pharm Sci 97(3):1135–1154PubMedCrossRefGoogle Scholar
  26. 26.
    Chew SY, Mi R, Hoke A, Leong KW (2008) The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 29(6):653–661PubMedGoogle Scholar
  27. 27.
    Chew SY, Wen Y, Dzenis Y, Leong KW (2006) The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des 12(36):4751–4770PubMedCrossRefGoogle Scholar
  28. 28.
    Cloyd JM, Malhotra NR, Weng L, Chen W, Mauck RL, Elliott DM (2007) Material properties in unconfined compression of human nucleus pulposus, injectable hyaluronic acid-based hydrogels and tissue engineering scaffolds. Eur Spine J 16(11):1892–1898PubMedCrossRefGoogle Scholar
  29. 29.
    Coric D, Mummaneni PV (2008) Nucleus replacement technologies. J Neurosurg Spine 8(2):115–120PubMedCrossRefGoogle Scholar
  30. 30.
    Crevensten G, Walsh AJ, Ananthakrishnan D, Page P, Wahba GM, Lotz JC, Berven S (2004) Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng 32(3):430–434PubMedCrossRefGoogle Scholar
  31. 31.
    da Silva RM, Mano JF, Reis RL (2007) Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends Biotechnol 25(12):577–583PubMedCrossRefGoogle Scholar
  32. 32.
    Dang JM, Leong KW (2007) Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Adv Mater 19(19):2775–2779CrossRefPubMedGoogle Scholar
  33. 33.
    Dang JM, Sun DD, Shin-Ya Y, Sieber AN, Kostuik JP, Leong KW (2006) Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells. Biomaterials 27(3):406–418PubMedCrossRefGoogle Scholar
  34. 34.
    Dhariwala B, Hunt E, Boland T (2004) Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng 10(9–10):1316–1322PubMedGoogle Scholar
  35. 35.
    Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143PubMedCrossRefGoogle Scholar
  36. 36.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689PubMedCrossRefGoogle Scholar
  37. 37.
    Evans C (2006) Potential biologic therapies for the intervertebral disc. J Bone Joint Surg Am 88(Suppl 2):95–98PubMedCrossRefGoogle Scholar
  38. 38.
    Fiala R, Vidlar A, Vrtal R, Belej K, Student V (2007) Porcine small intestinal submucosa graft for repair of anterior urethral strictures. Eur Urol 51(6):1702–1708 discussion 1708PubMedCrossRefGoogle Scholar
  39. 39.
    Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36:1263–1269PubMedCrossRefGoogle Scholar
  40. 40.
    Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683PubMedGoogle Scholar
  41. 41.
    Gray DW (2001) An overview of the immune system with specific reference to membrane encapsulation and islet transplantation. Ann N Y Acad Sci 944:226–239PubMedCrossRefGoogle Scholar
  42. 42.
    Grohn P, Klock G, Zimmermann U (1997) Collagen-coated Ba(2+)-alginate microcarriers for the culture of anchorage-dependent mammalian cells. Biotechniques 22(5):970–975PubMedGoogle Scholar
  43. 43.
    Gruber HE, Hanley EN Jr (2003) Biologic strategies for the therapy of intervertebral disc degeneration. Expert Opin Biol Ther 3(8):1209–1214PubMedCrossRefGoogle Scholar
  44. 44.
    Hall S (1997) Axonal regeneration through acellular muscle grafts. J Anat 190(1):57–71PubMedCrossRefGoogle Scholar
  45. 45.
    Halloran DO, Grad S, Stoddart M, Dockery P, Alini M, Pandit AS (2008) An injectable cross-linked scaffold for nucleus pulposus regeneration. Biomaterials 29(4):438–447PubMedCrossRefGoogle Scholar
  46. 46.
    Hamilton DJ, Séguin CA, Wang J, Pilliar RM, Kandel RA (2006) Bioengineering of skeletal tissues team: formation of a nucleus pulposus-cartilage endplate construct in vitro. Biomaterials 27(3):397–405PubMedCrossRefGoogle Scholar
  47. 47.
    Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24):4385–4415PubMedCrossRefGoogle Scholar
  48. 48.
    Ho G, Leung VY, Cheung KM, Chan D (2008) Effect of severity of intervertebral disc injury on mesenchymal stem cell-based regeneration. Connect Tissue Res 49(1):15–21PubMedCrossRefGoogle Scholar
  49. 49.
    Hodde J (2006) Extracellular matrix as a bioactive material for soft tissue reconstruction. ANZ J Surg 76(12):1096–1100PubMedCrossRefGoogle Scholar
  50. 50.
    Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524PubMedCrossRefGoogle Scholar
  51. 51.
    Hubbell JA (1995) Biomaterials in tissue engineering. Biotechnology (N Y) 13(6):565–576CrossRefGoogle Scholar
  52. 52.
    Hui TY, Cheung KMC, Cheung WL, Chan D, Chan BP (2008) In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: influence of cell seeding density and collagen concentration. Biomaterials 29:3201–3212PubMedCrossRefGoogle Scholar
  53. 53.
    Humes HD (2005) Stem cells: the next therapeutic frontier. Trans Am Clin Climatol Assoc 116:167–183PubMedGoogle Scholar
  54. 54.
    Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362PubMedCrossRefGoogle Scholar
  55. 55.
    Ifkovits JL, Burdick JA (2007) Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 13(10):2369–2385PubMedCrossRefGoogle Scholar
  56. 56.
    Ingram JH, Korossis S, Howling G, Fisher J, Ingham E (2007) The use of ultrasonication to aid recellularization of acellular natural tissue scaffolds for use in anterior cruciate ligament reconstruction. Tissue Eng 13(7):1561–1572PubMedCrossRefGoogle Scholar
  57. 57.
    Isenberg BC, Tsuda Y, Williams C, Shimizu T, Yamato M, Okano T, Wong JY (2008) A thermoresponsive, microtextured substrate for cell sheet engineering with defined structural organization. Biomaterials 29(17):2565–2572PubMedCrossRefGoogle Scholar
  58. 58.
    Iwata H, Amemiya H, Hayashi R, Fujii S, Akutsu T (1990) The use of photocrosslinkable polyvinyl alcohol in the immunoisolation of pancreatic islets. Transplant Proc 22(2):797–799PubMedGoogle Scholar
  59. 59.
    Karp JM, Langer R (2007) Development and therapeutic applications of advanced biomaterials. Curr Opin Biotechnol 18(5):454–459PubMedGoogle Scholar
  60. 60.
    Katsuura A, Hukuda S (1994) Experimental study of intervertebral disc allografting in the dog. Spine 19(21):2426–2432PubMedCrossRefGoogle Scholar
  61. 61.
    Kim BS, Baez CE, Atala A (2000) Biomaterials for tissue engineering. World J Urol 18(1):2–9PubMedCrossRefGoogle Scholar
  62. 62.
    Knight RL, Wilcox HE, Korossis SA, Fisher J, Ingham E (2008) The use of acellular matrices for the tissue engineering of cardiac valves. Proc Inst Mech Eng [H] 222(1):129–143Google Scholar
  63. 63.
    Kurella A, Dahotre NB (2005) Review paper: surface modification for bioimplants: the role of laser surface engineering. J Biomater Appl 20(1):5–50PubMedCrossRefGoogle Scholar
  64. 64.
    Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492PubMedCrossRefGoogle Scholar
  65. 65.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926PubMedCrossRefGoogle Scholar
  66. 66.
    Lanza RP, Hayes JL, Chick WL (1996) Encapsulated cell technology. Nat Biotechnol 14(9):1107–1111PubMedCrossRefGoogle Scholar
  67. 67.
    Le Visage C, Kim SW, Tateno K, Sieber AN, Kostuik JP, Leong KW (2006) Interaction of human mesenchymal stem cells with disc cells: changes in extracellular matrix biosynthesis. Spine 31(18):2036–2042PubMedCrossRefGoogle Scholar
  68. 68.
    Le Visage C, Yang SH, Kadakia L, Sieber AN, Kostuik JP, Leong KW (2006) Small intestinal submucosa as a potential bioscaffold for intervertebral disc regeneration. Spine 31(21):2423–2430PubMedCrossRefGoogle Scholar
  69. 69.
    Le Visage K, Dang JM, Chan BP, Serhan H, Sieber AN, Kostuik JP, Leong KW (2008) Biomaterials development for disc degeneration: a pilot study of small intestinal submucosa for nucleus pulposus augmentation in a non-human primate model. World Forum for Spine Research—the intervertebral disc. First Japanese Meeting, 23–26 January 2008, The Westin Miyako Kyoto, Kyoto, JapanGoogle Scholar
  70. 70.
    Leone G, Torricelli P, Chiumiento A, Facchini A, Barbucci R (2008) Amidic alginate hydrogel for nucleus pulposus replacement. J Biomed Mater Res A 84(2):391–401PubMedGoogle Scholar
  71. 71.
    Luk KD, Ruan DK, Chow DH, Leong JC (1997) Intervertebral disc autografting in a bipedal animal model. Clin Orthop Relat Res 337:13–26PubMedCrossRefGoogle Scholar
  72. 72.
    Luk KD, Ruan DK, Lu DS, Fei ZQ (2003) Fresh frozen intervertebral disc allografting in a bipedal animal model. Spine 28(9):864–869PubMedCrossRefGoogle Scholar
  73. 73.
    Lumpkins SB, Pierre N, McFetridge PS (2008) A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomater 4(4):808–816PubMedCrossRefGoogle Scholar
  74. 74.
    Masuda K, An HS (2006) Prevention of disc degeneration with growth factors. Eur Spine J 15(Suppl 3):S422–S432PubMedCrossRefGoogle Scholar
  75. 75.
    Matsuzaki H, Wakabayashi K, Ishihara K, Ishikawa H, Ohkawa A (1996) Allografting intervertebral discs in dogs: a possible clinical application. Spine 21(2):178–183PubMedCrossRefGoogle Scholar
  76. 76.
    Mizuno H, Roy AK, Vacanti CA, Kojima K, Ueda M, Bonassar LJ (2004) Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement. Spine 29(12):1290–1297PubMedCrossRefGoogle Scholar
  77. 77.
    Mligiliche N, Endo K, Okamoto K, Fujimoto E, Ide C (2002) Extracellular matrix of human amnion manufactured into tubes as conduits for peripheral nerve regeneration. J Biomed Mater Res 63(5):591–600PubMedCrossRefGoogle Scholar
  78. 78.
    Morra M, Cassinelli C (2006) Biomaterials surface characterization and modification. Int J Artif Organs 29(9):824–833PubMedGoogle Scholar
  79. 79.
    Muschler GF, Nakamoto C, Griffith LG (2004) Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am 86-A(7):1541–1558PubMedGoogle Scholar
  80. 80.
    Nerurkar NL, Elliott DM, Mauck RL (2007) Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res 25(8):1018–1028PubMedCrossRefGoogle Scholar
  81. 81.
    Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22):4307–4314PubMedCrossRefGoogle Scholar
  82. 82.
    Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y (2004) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351(12):1187–1196PubMedCrossRefGoogle Scholar
  83. 83.
    Nuttelman CR, Tripodi MC, Anseth KS (2005) Synthetic hydrogel niches that promote hMSC viability. Matrix Biol 24(3):208–218PubMedCrossRefGoogle Scholar
  84. 84.
    Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y (1995) Mechanism of cell detachment from temperature-modulated, hydrophilic–hydrophobic polymer surfaces. Biomaterials 16(4):297–303PubMedCrossRefGoogle Scholar
  85. 85.
    Okano T, Yamada N, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 27(10):1243–1251PubMedCrossRefGoogle Scholar
  86. 86.
    Orive G, Hernández RM, Gascón AR, Calafiore R, Chang TM, De Vos P, Hortelano G, Hunkeler D, Lacík I, Shapiro AM, Pedraz JL (2003) Cell encapsulation: promise and progress. Nat Med 9(1):104–107PubMedCrossRefGoogle Scholar
  87. 87.
    Orive G, Hernández RM, Rodríguez Gascón A, Calafiore R, Chang TM, de Vos P, Hortelano G, Hunkeler D, Lacík I, Pedraz JL (2004) History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 22(2):87–92PubMedCrossRefGoogle Scholar
  88. 88.
    Paesold G, Nerlich AG, Boos N (2007) Biological treatment strategies for disc degeneration: potentials and shortcomings. Eur Spine J 16(4):447–468PubMedCrossRefGoogle Scholar
  89. 89.
    Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211PubMedCrossRefGoogle Scholar
  90. 90.
    Piez KA (1997) History of extracellular matrix: a personal view. Matrix Biol 16(3):85–92PubMedCrossRefGoogle Scholar
  91. 91.
    Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S (2001) Composition and structure of articular cartilage: a template for tissue repair (review). Clin Orthop Relat Res 391(Suppl):S26–S33PubMedCrossRefGoogle Scholar
  92. 92.
    Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75PubMedCrossRefGoogle Scholar
  93. 93.
    Revell PA, Damien E, Di Silvio L, Gurav N, Longinotti C, Ambrosio L (2007) Tissue engineered intervertebral disc repair in the pig using injectable polymers. J Mater Sci Mater Med 18(2):303–308PubMedCrossRefGoogle Scholar
  94. 94.
    Richardson SM, Curran JM, Chen R, Vaughan-Thomas A, Hunt JA, Freemont AJ, Hoyland JA (2006) The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid (PLLA) scaffolds. Biomaterials 27(22):4069–4078PubMedCrossRefGoogle Scholar
  95. 95.
    Robert L (2001) Matrix biology: past, present and future. Pathol Biol (Paris) 49(4):279–283Google Scholar
  96. 96.
    Ruan D, He Q, Ding Y, Hou L, Li J, Luk KD (2007) Intervertebral disc transplantation in the treatment of degenerative spine disease: a preliminary study. Lancet 369(9566):993–999PubMedCrossRefGoogle Scholar
  97. 97.
    Saad L, Spector M (2004) Effects of collagen type on the behavior of adult canine annulus fibrosus cells in collagen-glycosaminoglycan scaffolds. J Biomed Mater Res A 71(2):233–241PubMedCrossRefGoogle Scholar
  98. 98.
    Sakai D, Mochida J, Iwashina T, Watanabe T, Suyama K, Ando K, Hotta T (2006) Atelocollagen for culture of human nucleus pulposus cells forming nucleus pulposus-like tissue in vitro: influence on the proliferation and proteoglycan production of HNPSV-1 cells. Biomaterials 27(3):346–353PubMedCrossRefGoogle Scholar
  99. 99.
    Sakai D, Mochida J, Yamamoto Y, Nomura T, Okuma M, Nishimura K, Nakai T, Ando K, Hotta T (2003) Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials 24(20):3531–3541PubMedCrossRefGoogle Scholar
  100. 100.
    Sano A, Maeda M, Nagahara S, Ochiya T, Honma K, Itoh H, Miyata T, Fujioka K (2003) Atelocollagen for protein and gene delivery. Adv Drug Deliv Rev 55(12):1651–1677PubMedCrossRefGoogle Scholar
  101. 101.
    Schmidt CE, Baier JM (2000) Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 21(22):2215–2231PubMedCrossRefGoogle Scholar
  102. 102.
    Schönherr E, Hausser HJ (2000) Extracellular matrix and cytokines: a functional unit. Dev Immunol 7(2–4):89–101PubMedGoogle Scholar
  103. 103.
    Sebastine IM, Williams DJ (2007) Current developments in tissue engineering of nucleus pulposus for the treatment of intervertebral disc degeneration. Conf Proc IEEE Eng Med Biol Soc 2007:6401–6406PubMedGoogle Scholar
  104. 104.
    Sekiya S, Shimizu T, Yamato M, Kikuchi A, Okano T (2006) Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem Biophys Res Commun 341(2):573–582PubMedCrossRefGoogle Scholar
  105. 105.
    Shimizu T, Sekine H, Yang J, Isoi Y, Yamato M, Kikuchi A, Kobayashi E, Okano T (2006) Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J 20(6):708–710PubMedGoogle Scholar
  106. 106.
    Shimizu T, Yamato M, Kikuchi A, Okano T (2003) Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 24(13):2309–2316PubMedCrossRefGoogle Scholar
  107. 107.
    Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006PubMedCrossRefGoogle Scholar
  108. 108.
    Sobajima S, Vadala G, Shimer A, Kim JS, Gilbertson LG, Kang JD (2008) Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J December (in press)Google Scholar
  109. 109.
    Spector M (2006) Biomaterials-based tissue engineering and regenerative medicine solutions to musculoskeletal problems. Swiss Med Wkly 136(19–20):293–301PubMedGoogle Scholar
  110. 110.
    Takezawa T, Mori Y, Yoshizato K (1990) Cell culture on a thermo-responsive polymer surface. Biotechnology (N Y) 8(9):854–856CrossRefGoogle Scholar
  111. 111.
    Tsuda Y, Shimizu T, Yamato M, Kikuchi A, Sasagawa T, Sekiya S, Kobayashi J, Chen G, Okano T (2007) Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Biomaterials 28(33):4939–4946PubMedCrossRefGoogle Scholar
  112. 112.
    Uitto J, Olsen DR, Fazio MJ (1989) Extracellular matrix of the skin: 50 years of progress. J Invest Dermatol 92(4 Suppl):61S–77SPubMedCrossRefGoogle Scholar
  113. 113.
    Uludag H, De Vos P, Tresco PA (2000) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42(1–2):29–64PubMedCrossRefGoogle Scholar
  114. 114.
    Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354(Suppl 1):SI32–SI34PubMedGoogle Scholar
  115. 115.
    Vernengo J, Fussell GW, Smith NG, Lowman AM (2008) Evaluation of novel injectable hydrogels for nucleus pulposus replacement. J Biomed Mater Res B Appl Biomater 84(1):64–69PubMedGoogle Scholar
  116. 116.
    Walker MH, Anderson DG (2004) Molecular basis of intervertebral disc degeneration. Spine J 4(6 Suppl):158S–166SPubMedCrossRefGoogle Scholar
  117. 117.
    Wan AC, Yim EK, Liao IC, Le Visage C, Leong KW (2004) Encapsulation of biologics in self-assembled fibers as biostructural units for tissue engineering. J Biomed Mater Res A 71(4):586–595PubMedCrossRefGoogle Scholar
  118. 118.
    Wan Y, Feng G, Shen FH, Laurencin CT, Li X (2008) Biphasic scaffold for annulus fibrosus tissue regeneration. Biomaterials 29(6):643–652PubMedCrossRefGoogle Scholar
  119. 119.
    Wang IN, Lu HH (2006) Role of cell–cell interactions on the regeneration of soft tissue-to-bone interface. Conf Proc IEEE Eng Med Biol Soc 1:783–786PubMedCrossRefGoogle Scholar
  120. 120.
    Wilda H, Gough JE (2006) In vitro studies of annulus fibrosus disc cell attachment, differentiation and matrix production on PDLLA/45S5 Bioglass composite films. Biomaterials 27(30):5220–5229PubMedCrossRefGoogle Scholar
  121. 121.
    Wilke HJ, Heuer F, Neidlinger-Wilke C, Claes L (2006) Is a collagen scaffold for a tissue engineered nucleus replacement capable of restoring disc height and stability in an animal model? Eur Spine J 15(Suppl 3):S433–S438PubMedCrossRefGoogle Scholar
  122. 122.
    Wong HL, Wang MX, Cheung PT, Yao KM, Chan BP (2007) A 3D collagen microsphere culture system for GDNF-secreting HEK293 cells with enhanced protein productivity. Biomaterials 28:5369–5380PubMedCrossRefGoogle Scholar
  123. 123.
    Yang J, Yamato M, Shimizu T, Sekine H, Ohashi K, Kanzaki M, Ohki T, Nishida K, Okano T (2007) Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28(34):5033–5043PubMedCrossRefGoogle Scholar
  124. 124.
    Yang S, Leong KF, Du Z, Chua CK (2002) The design of scaffolds for use in tissue engineering: Part II. Rapid prototyping techniques. Tissue Eng 8(1):1–11PubMedCrossRefGoogle Scholar
  125. 125.
    Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering: Part I. Traditional factors. Tissue Eng 7(6):679–689PubMedCrossRefGoogle Scholar
  126. 126.
    Yannas IV (1996) Natural materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials Sciences: an introduction to materials in medicine. Academic Press, New York, pp 84–93Google Scholar
  127. 127.
    Yim EK, Reano RM, Pang SW, Yee AF, Chen CS, Leong KW (2005) Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26(26):5405–5413PubMedCrossRefGoogle Scholar
  128. 128.
    Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178PubMedCrossRefGoogle Scholar
  129. 129.
    Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D (2005) Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater 73(1):61–67PubMedGoogle Scholar
  130. 130.
    Zielinski BA, Aebischer P (1994) Chitosan as a matrix for mammalian cell encapsulation. Biomaterials 15(13):1049–1056PubMedCrossRefGoogle Scholar
  131. 131.
    Zimmermann H, Hillgartner M, Manz B, Feilen P, Brunnenmeier F, Leinfelder U, Weber M, Cramer H, Schneider S, Hendrich C, Volke F, Zimmermann U (2003) Fabrication of homogeneously cross-linked, functional alginate microcapsules validated by NMR-, CLSM- and AFM-imaging. Biomaterials 24(12):2083–2096PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Medical Engineering Program, Department of Mechanical EngineeringThe University of Hong KongHong Kong SARChina
  2. 2.Department of Biomedical EngineeringDuke UniversityDurhamUSA

Personalised recommendations