European Spine Journal

, Volume 17, Supplement 4, pp 452–458 | Cite as

Future perspectives of cell-based therapy for intervertebral disc disease



Intervertebral disc degeneration is a primary cause of low back pain and has a high societal cost. Research on cell-based therapies for intervertebral disc disease is emerging, along with the interest in biological therapy to treat disc disease without reducing the mobility of the spinal motion segment. Results from animal models have shown promising results under limited conditions; however, future studies are needed to optimise efficacy, methodology, and safety. To advance research on cell-based therapy for intervertebral disc disease, a better understanding of the phenotype and differentiation of disc cells and of their microenvironment is essential. This article reviews current concepts in cell-based therapy for intervertebral disc disease, with updates on potential cell sources tested primarily using animal models, and discusses the hurdles to clinical application. Future perspectives for cell-based therapies for intervertebral disc disease are also discussed.


Intervertebral disc Nucleus pulposus Cell transplantation Stem cell Regenerative medicine 


  1. 1.
    An HS, Thonar EJ, Masuda K (2003) Biological repair of intervertebral disc. Spine 28:S86–S92PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson DG, Albert TJ, Fraser JK, Risbud M, Wuisman P, Meisel HJ, Tannoury C, Shapiro I, Vaccaro AR (2005) Cellular therapy for disc degeneration. Spine 30:S14–S19PubMedCrossRefGoogle Scholar
  3. 3.
    Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M (1996) The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003PubMedCrossRefGoogle Scholar
  4. 4.
    Alini M, Roughley PJ, Antoniou J, Stoll T, Aebi M (2002) A biological approach to treating disc degeneration: not for today, but may be for tomorrow. Eur Spine J 11:S215–S220PubMedGoogle Scholar
  5. 5.
    Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine 20:1307–1314PubMedGoogle Scholar
  6. 6.
    Crevensten G, Walsh AJ, Ananthakrishnan D, Page P, Wahba GM, Lotz JC, Berven S (2004) Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng 32:430–434PubMedCrossRefGoogle Scholar
  7. 7.
    Frymoyer JW, Cats-Baril WL (1991) An overview of the incidence and costs of low back pain. Orthop Clin North Am 22:263–271PubMedGoogle Scholar
  8. 8.
    Fujita N, Miyamoto T, Imai J, Hosogane N, Suzuki T, Yagi M, Morita K, Ninomiya K, Miyamoto K, Takaishi H, Matsumoto M, Morioka H, Yabe H, Chiba K, Watanabe S, Toyama Y, Suda T (2005) CD24 is expressed specifically in the nucleus pulposus of intervertebral discs. Biochem Biophys Res Commun 338:1890–1896PubMedCrossRefGoogle Scholar
  9. 9.
    Ganey TM, Meisel HJ (2002) A potential role for cell-based therapeutics in the treatment of intervertebral disc herniation. Eur Spine J 11(Suppl 2):S206–S214PubMedGoogle Scholar
  10. 10.
    Ganey T, Libera J, Moos V, Alasevic O, Fritsch KG, Meisel HJ, Hutton WC (2003) Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc. Spine 28:2609–2620PubMedCrossRefGoogle Scholar
  11. 11.
    Gruber HE, Johnson TL, Leslie K, Ingram JA, Martin D, Hoelscher G, Banks D, Phieffer L, Coldham G, Hanley EN Jr (2002) Autologous intervertebral disc cell implantation: a model using Psammomys obesus, the sand rat. Spine 27:1626–1633PubMedCrossRefGoogle Scholar
  12. 12.
    Gorensek M, Jaksimović C, Kregar-Velikonja N, Gorensek M, Knezevic M, Jeras M, Pavlovcic V, Cör A (2004) Nucleus pulposus repair with cultured autologous elastic cartilage derived chondrocytes. Cell Mol Biol Lett 9:363–373PubMedGoogle Scholar
  13. 13.
    Hiyama A, Mochida J, Iwashina T, Omi H, Watanabe T, Serigano K, Tamura F, Sakai D (2008) Transplantation of mesenchymal stem cells in a canine disc degeneration model. J Orthop Res 26:589–600PubMedCrossRefGoogle Scholar
  14. 14.
    Hoogendoorn RJ, Lu ZF, Kroeze RJ, Bank RA, Wuisman PI, Helder MN (2008) Adipose stem cells for intervertebral disc regeneration: current status and concepts for the future. J Cell Mol Med [Epub ahead of print]Google Scholar
  15. 15.
    Lee CR, Sakai D, Nakai T, Toyama K, Mochida J, Alini M, Grad S (2007) A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat. Eur Spine J 16:2174–2185PubMedCrossRefGoogle Scholar
  16. 16.
    Leung VY, Chan D, Cheung KM (2006) Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction. Eur Spine J 15:S406–S413PubMedCrossRefGoogle Scholar
  17. 17.
    Lu ZF, Zandieh Doulabi B, Wuisman PI, Bank RA, Helder MN (2007) Differentiation of adipose stem cells by nucleus pulposus cells: configuration effect. Biochem Biophys Res Commun 359:991–996PubMedCrossRefGoogle Scholar
  18. 18.
    Maniadakis N (2000) Gray A (2000) The economic burden of back pain in the UK. Pain 84:95–103PubMedCrossRefGoogle Scholar
  19. 19.
    Masuda K, Aota Y, Muehleman C, Imai Y, Okuma M, Thonar EJ, Andersson GB, An HS (2005) A novel rabbit model of mild, reproducible disc degeneration by an annulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 30:5–14PubMedGoogle Scholar
  20. 20.
    Meisel HJ, Ganey T, Hutton WC, Libera J, Minkus Y, Alasevic O (2006) Clinical experience in cell-based therapeutics: intervention and outcome. Eur Spine J 15:S397–S405PubMedCrossRefGoogle Scholar
  21. 21.
    Mwale F, Roughley P, Antoniou J (2004) Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc. Eur Cell Mater 8:58–63PubMedGoogle Scholar
  22. 22.
    Nishimura K, Mochida J (1998) Percutaneous reinsertion of the nucleus pulposus. An experimental study. Spine 23:1531–1538PubMedCrossRefGoogle Scholar
  23. 23.
    Nomura T, Mochida J, Okuma M, Nishimura K, Sakabe K (2001) Nucleus pulposus allograft retards intervertebral disc degeneration. Clin Orthop 389:94–101PubMedCrossRefGoogle Scholar
  24. 24.
    Okuma M, Mochida J, Nishimura K, Sakabe K, Seiki K (2000) Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration: an in vitro and in vivo experimental study. J Orthop Res 3:988–997CrossRefGoogle Scholar
  25. 25.
    Park JB, Chang H, Kim KW (2001) Expression of Fas ligand and apoptosis of disc cells in herniated lumbar disc tissue. Spine 26:618–621PubMedCrossRefGoogle Scholar
  26. 26.
    Phillips FM, Reuben J, Wetzel FT (2002) Intervertebral disc degeneration adjacent to a lumbar fusion. An experimental rabbit model. J Bone Joint Surg Br 84:289–294PubMedCrossRefGoogle Scholar
  27. 27.
    Risbud MV, Guttapalli A, Stokes DG, Hawkins D, Danielson KG, Schaer TP, Albert TJ, Shapiro IM (2006) Nucleus pulposus cells express HIF–1alpha under normoxic culture conditions: a metabolic adaptation to the intervertebral disc microenvironment. J Cell Biochem 98:152–159PubMedCrossRefGoogle Scholar
  28. 28.
    Sakai D, Mochida J, Yamamoto Y, Nomura T, Okuma M, Nishimura K, Nakai T, Ando K, Hotta T (2003) Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials 24:3531–3541PubMedCrossRefGoogle Scholar
  29. 29.
    Sakai D, Mochida J, Iwashina T, Watanabe T, Nakai T, Ando K, Hotta T (2005) Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration7. Spine 30:2379–2387PubMedCrossRefGoogle Scholar
  30. 30.
    Sakai D, Mochida J, Iwashina T, Hiyama A, Omi H, Imai M, Nakai T, Ando K, Hotta T (2006) Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials 27:335–345PubMedCrossRefGoogle Scholar
  31. 31.
    Semba K, Araki K, Li Z, Matsumoto K, Suzuki M, Nakagata N, Takagi K, Takeya M, Yoshinobu K, Araki M, Imai K, Abe K, Yamamura K (2006) A novel murine gene, Sickle tail, linked to the Danforth’s short tail locus, is required for normal development of the intervertebral disc. Genetics 172:445–456PubMedCrossRefGoogle Scholar
  32. 32.
    Singh K, Masuda K, An HS (2005) Animal models for human disc degeneration. Spine J 5:267S–279SPubMedCrossRefGoogle Scholar
  33. 33.
    Takada T, Nishida K, Doita M, Kurosaka M (2002) Fas ligand exists on intervertebral disc cells: a potential molecular mechanism for immune privilege of the disc. Spine 27:1526–1530PubMedCrossRefGoogle Scholar
  34. 34.
    Thompson JP, Pearce RH, Schechter MT, Adams ME, Tsang IK, Bishop PB (1990) Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine 15:411–415PubMedCrossRefGoogle Scholar
  35. 35.
    Yamamoto Y, Mochida J, Sakai D, Nakai T, Nishimura K, Kawada H, Hotta T (2004) Upregulation of the viability of nucleus pulposus cells by bone-marrow-derived stromal cells: significance of direct cell-to-cell contact in co-culture system. Spine 29:1508–1514PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang YG, Guo X, Xu P, Kang LL, Li J (2005) Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans. Clin Orthop Relat Res 430:219–226PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Orthopaedic Surgery, Surgical Science and Research Center for Regenerative MedicineTokai University School of MedicineIseharaJapan

Personalised recommendations