Advertisement

European Spine Journal

, Volume 17, Issue 6, pp 857–863 | Cite as

Comparison of open versus percutaneous pedicle screw insertion in a sheep model

  • W. LehmannEmail author
  • A. Ushmaev
  • A. Ruecker
  • J. Nuechtern
  • L. Grossterlinden
  • P. G. Begemann
  • T. Baeumer
  • J. M. Rueger
  • D. Briem
Original Article

Abstract

Minimally invasive surgery has become more and more important for the treatment of traumatic spine fractures. Besides, some clinical studies, objective data regarding the possible lower damage to the surrounding tissue of the spine is still missing. Here we report a sheep model where we compared a percutaneous versus an open approach for dorsal instrumentation with pedicle screws to the spine. Twelve skeletally mature sheep underwent bilateral pedicle screw fixation at the L4–L6 level. Forty-eight pedicle screws were bilaterally inserted into the pedicles and connected with rods using either an open dorsal standard or a percutaneous approach. Operation time, blood flow, compartment pressure, radiation time, loss of blood, laboratory findings and EMG were evaluated to objectify possible advantages for the percutaneous operation technique. Loss of blood and the distribution of CK-MM as a marker for muscle damage were significantly lower in the percutaneous group. However, radiation time was significantly longer in the percutaneous group. Other parameters like compartment pressure, blood flow and also measurement of the EMG at different time points did not reveal significant differences. Based on the results we found in the present study, percutaneous screw insertion can bring moderate advantages but it should be noted that essential functional deficits to the muscle could not be detected.

Keywords

Spine Minimal-invasive surgery Pedicle screw Animal study 

References

  1. 1.
    Arens S, Kraft C, Schlegel U, Printzen G, Perren SM, Hansis M (1999) Susceptibility to local infection in biological internal fixation. Experimental study of open vs minimally invasive plate osteosynthesis in rabbits. Arch Orthop Trauma Surg. 119:82–85PubMedCrossRefGoogle Scholar
  2. 2.
    Bastian L, Knop C, Lange U, Blauth M (1999) Transpedicular implantation of screws in the thoracolumbar spine. Results of a survey of methods, frequency and complications. Orthopade 28:693–702PubMedCrossRefGoogle Scholar
  3. 3.
    Briem D, Behechtnejad A, Ouchmaev A, Morfeld M, Schermelleh-Engel K, Amling M, Rueger JM (2007) Pain regulation and health-related quality of life after thoracolumbar fractures of the spine. Eur Spine JGoogle Scholar
  4. 4.
    Briem D, Lehmann W, Ruecker AH, Windolf J, Rueger JM, Linhart W (2004) Factors influencing the quality of life after burst fractures of the thoracolumbar transition. Arch Orthop Trauma Surg 124:461–468PubMedCrossRefGoogle Scholar
  5. 5.
    Chiras J, Morvan G, Merland JJ, Bories J (1995) Blood supply to the thoracic (dorsal) and lumbar spine. Anat Clin 4:23–31CrossRefGoogle Scholar
  6. 6.
    Datta G, Gnanalingham KK, Peterson D, Mendoza N, O’Neill K, Van Dellen J, McGregor A, Hughes SP (2004) Back pain and disability after lumbar laminectomy: is there a relationship to muscle retraction? Neurosurgery 54:1413–1420PubMedCrossRefGoogle Scholar
  7. 7.
    Dick W, Kluger P, Magerl F, Woersdorfer O, Zach G (1985) A new device for internal fixation of thoracolumbar and lumbar spine fractures: the ‘fixateur interne’. Paraplegia 23:225–232PubMedGoogle Scholar
  8. 8.
    Foley KT, Gupta SK (2002) Percutaneous pedicle screw fixation of the lumbar spine: preliminary clinical results. J Neurosurg 97:7–12PubMedGoogle Scholar
  9. 9.
    Gaines RW Jr (2000) The use of pedicle-screw internal fixation for the operative treatment of spinal disorders. J Bone Joint Surg Am 82-A:1458–1476PubMedGoogle Scholar
  10. 10.
    Gejo R, Matsui H, Kawaguchi Y, Ishihara H, Tsuji H (1999) Serial changes in trunk muscle performance after posterior lumbar surgery. Spine 24:1023–1028PubMedCrossRefGoogle Scholar
  11. 11.
    Grass R, Biewener A, Dickopf A, Rammelt S, Heineck J, Zwipp H (2006) [Percutaneous dorsal versus open instrumentation for fractures of the thoracolumbar border. A comparative, prospective study]. Unfallchirurg 109:297–305PubMedCrossRefGoogle Scholar
  12. 12.
    Hansis M, Arens S, Wingenfeld C (1997) Rate of infection in trauma surgery. An overview based on recent German language literature. Unfallchirurg 100:457–464PubMedCrossRefGoogle Scholar
  13. 13.
    Jahng TA, Fu TS, Kim DH (2004) Open versus endoscopic lumbar pedicle screw fixation and posterolateral fusion in a sheep model: a feasibility study. Spine J 4:519–526PubMedCrossRefGoogle Scholar
  14. 14.
    Kandziora F, Schleicher P, Scholz M, Pflugmacher R, Eindorf T, Haas NP, Pavlov PW (2005) Biomechanical testing of the lumbar facet interference screw. Spine 30:E34–E39PubMedCrossRefGoogle Scholar
  15. 15.
    Kandziora F, Schnake KJ, Klostermann CK, Haas NP (2004) [Vertebral body replacement in spine surgery]. Unfallchirurg 107:354–371PubMedCrossRefGoogle Scholar
  16. 16.
    Kawaguchi Y, Matsui H, Tsuji H (1997) Changes in serum creatine phosphokinase MM isoenzyme after lumbar spine surgery. Spine 22:1018–1023PubMedCrossRefGoogle Scholar
  17. 17.
    Kawaguchi Y, Yabuki S, Styf J, Olmarker K, Rydevik B, Matsui H, Tsuji H (1996) Back muscle injury after posterior lumbar spine surgery. Topographic evaluation of intramuscular pressure and blood flow in the porcine back muscle during surgery. Spine 21:2683–2688PubMedCrossRefGoogle Scholar
  18. 18.
    Kim DH, Albert TJ (2002) Update on use of instrumentation in lumbar spine disorders. Best Pract Res Clin Rheumatol 16:123–140PubMedCrossRefGoogle Scholar
  19. 19.
    Kramer M, Katzmaier P, Eisele R, Ebert V, Kinzl L, Hartwig E (2001) Surface electromyography-verified muscular damage associated with the open dorsal approach to the lumbar spine. Eur Spine J 10:414–420PubMedCrossRefGoogle Scholar
  20. 20.
    Lee SH, Choi WG, Lim SR, Kang HY, Shin SW (2004) Minimally invasive anterior lumbar interbody fusion followed by percutaneous pedicle screw fixation for isthmic spondylolisthesis. Spine J 4:644–649PubMedCrossRefGoogle Scholar
  21. 21.
    Lowery GL, Kulkarni SS (2000) Posterior percutaneous spine instrumentation. Eur Spine J 9(Suppl 1):S126–S130PubMedCrossRefGoogle Scholar
  22. 22.
    Magerl FP (1984) Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop Relat Res 125–141Google Scholar
  23. 23.
    McLain RF, Yerby SA, Moseley TA (2002) Comparative morphometry of L4 vertebrae: comparison of large animal models for the human lumbar spine. Spine 27:E200–E206PubMedCrossRefGoogle Scholar
  24. 24.
    Muller A, Gall C, Marz U, Reulen HJ (2000) A keyhole approach for endoscopically assisted pedicle screw fixation in lumbar spine instability. Neurosurgery 47:85–95PubMedCrossRefGoogle Scholar
  25. 25.
    Rechtine GR, Bono PL, Cahill D, Bolesta MJ, Chrin AM (2001) Postoperative wound infection after instrumentation of thoracic and lumbar fractures. J Orthop Trauma 15:566–569PubMedCrossRefGoogle Scholar
  26. 26.
    Ringel F, Stoffel M, Stuer C, Meyer B (2006) Minimally invasive transmuscular pedicle screw fixation of the thoracic and lumbar spine. Neurosurgery 59:ONS361–ONS366PubMedCrossRefGoogle Scholar
  27. 27.
    Schwender JD, Holly LT, Rouben DP, Foley KT (2005) Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech 18(Suppl):S1–S6PubMedCrossRefGoogle Scholar
  28. 28.
    Stokes IA, Gardner-Morse M, Henry SM, Badger GJ (2000) Decrease in trunk muscular response to perturbation with preactivation of lumbar spinal musculature. Spine 25:1957–1964PubMedCrossRefGoogle Scholar
  29. 29.
    Suwa H, Hanakita J, Ohshita N, Gotoh K, Matsuoka N, Morizane A (2000) Postoperative changes in paraspinal muscle thickness after various lumbar back surgery procedures. Neurol Med Chir (Tokyo) 40:151–154CrossRefGoogle Scholar
  30. 30.
    Teitelbaum GP, Shaolian S, McDougall CG, Preul MC, Crawford NR, Sonntag VK (2004) New percutaneously inserted spinal fixation system. Spine 29:703–709PubMedCrossRefGoogle Scholar
  31. 31.
    Trivedi JM (2002) Spinal trauma: therapy—options and outcomes. Eur J Radiol 42:127–134PubMedCrossRefGoogle Scholar
  32. 32.
    Weber BR, Grob D, Dvorak J, Muntener M (1997) Posterior surgical approach to the lumbar spine and its effect on the multifidus muscle. Spine 22:1765–1772PubMedCrossRefGoogle Scholar
  33. 33.
    Wiesner L, Kothe R, Ruther W (1999) Anatomic evaluation of two different techniques for the percutaneous insertion of pedicle screws in the lumbar spine. Spine 24:1599–1603PubMedCrossRefGoogle Scholar
  34. 34.
    Wiesner L, Kothe R, Schulitz KP, Ruther W (2000) Clinical evaluation and computed tomography scan analysis of screw tracts after percutaneous insertion of pedicle screws in the lumbar spine. Spine 25:615–621PubMedCrossRefGoogle Scholar
  35. 35.
    Yuan HA, Garfin SR, Dickman CA, Mardjetko SM (1994) A historical cohort study of pedicle screw fixation in thoracic, lumbar, and sacral spinal fusions. Spine 19:2279S–2296SPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • W. Lehmann
    • 1
    Email author
  • A. Ushmaev
    • 1
  • A. Ruecker
    • 1
  • J. Nuechtern
    • 1
  • L. Grossterlinden
    • 1
  • P. G. Begemann
    • 2
  • T. Baeumer
    • 3
  • J. M. Rueger
    • 1
  • D. Briem
    • 1
  1. 1.Department of Trauma, Hand and Reconstructive Surgery, School of MedicineHamburg UniversityHamburgGermany
  2. 2.Department of Diagnostic and Interventional Radiology, School of MedicineHamburg UniversityHamburgGermany
  3. 3.Department of Neurology, School of MedicineHamburg UniversityHamburgGermany

Personalised recommendations