European Spine Journal

, Volume 17, Issue 3, pp 432–438 | Cite as

The distribution of mineral density in the cervical vertebral endplates

  • Magdalena Müller-Gerbl
  • Stefan Weißer
  • Ulrich Linsenmeier
Original Article


Subsidence of various constructs into the vertebral body is a well-known complication in anterior fusion. Information on bone structure is needed, as a basis for improving these procedures. There are, however, no data available on the distribution of mineral density within vertebral endplates. In this study the regional distribution of mineralization within the cervical endplates with respect to endplate orientation (inferior and superior endplate) and level distribution (C3–C7) was examined by means of computed tomographic osteoabsorptiometry (CT-OAM). The distribution of mineralization in 80 cervical endplates of 8 spinal columns (4 male, 4 female, age range 38–62 years) in vertebrae C3–C7 was investigated by CT osteoabsorptiometry (CT-OAM). The subchondral mineralization distribution revealed considerable topographic differences within each endplate, whereby the areas of greatest density were found in the peripheral marginal zones with maxima in the posterolateral surface, whereas mineralization density was much lower in the central areas. The superior endplates showed an additional posteromedial maximum, whereas the inferior endplates showed an additional anterior mineralization maximum. Comparison of the distribution patters of inferior and superior endplates at different levels from C3 to C7 reveals a uniform increase of mineralization in the anterior portions from cranial to caudal. The mineralization distribution showed characteristic reproducible patterns. The maximal values occurred in the posterolateral parts, and can thus be considered a morphological substrate of high long-term loading. This can serve as a basis for improved prosthesis design and the anchorage point for various fusion techniques.


Mineral density Cervical spine-endplate CT-osteoabsorptiometry (CT-OAM) 


  1. 1.
    Bogduk N, Mercer S (2000) Biomechanics of the cervical spine. I: Normal kinematics. Clin Biomech 15:633–648CrossRefGoogle Scholar
  2. 2.
    Diedrich O, Perlick L, Schmitt O, Kraft CN (2001) Radiographic characteristics on conventional radiographs after posterior lumbar interbody fusion: comparative study between radiotranslucent and radiopaque cages. J Spinal Disord 14:522–532PubMedCrossRefGoogle Scholar
  3. 3.
    Edwards WT, Zheng Y, Ferrara LA, Yuan HA (2001) Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine 26:218–225PubMedCrossRefGoogle Scholar
  4. 4.
    Ferguson SJ, Steffen T (2003) Biomechanics of the aging spine. Eur Spine J 12(Suppl 2):S97–S103PubMedCrossRefGoogle Scholar
  5. 5.
    Grant JP, Oxland TR, Dvorak MF (2001) Mapping the structural properties of the lumbosacral vertebral endplates. Spine 26:889–896PubMedCrossRefGoogle Scholar
  6. 6.
    Grant JP, Oxland TR, Dvorak MF, Fisher CG (2002) The effects of bone density and disc degeneration on the structural property distributions in the lower lumbar vertebral endplates. J Orthop Res 20:1115–1120PubMedCrossRefGoogle Scholar
  7. 7.
    Holmes A, Hukins D, Freemont A (1993) End-plate displacement during compression of lumbar vertebra-disc-vertebra segments and the mechanism of failure. Spine 18:128–135PubMedCrossRefGoogle Scholar
  8. 8.
    Ikeuchi M, Yamamoto H, Shibata T, Otani M (2001) Mechanical augmentation of the vertebral body by calcium phosphate cement injection. J Orthop Sci 6:39–45PubMedCrossRefGoogle Scholar
  9. 9.
    Jost B, Cripton P, Lund T, Oxland TR, Lippuner K, Jaeger P, Nolte LP (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J 7:132–141PubMedCrossRefGoogle Scholar
  10. 10.
    Kettler A, Wilke H-J, Dietl R, Krammer M, Lumenta C, Claes L (2000) Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading. J Neurosurg 92(1 Suppl):87–92PubMedGoogle Scholar
  11. 11.
    Kothari M, Keaveny TM, Lin JC, Newitt DC, Genant HK (1998) Impact of spatial resolution on the prediction of trabecular architecture parameters. Bone 22:437–443PubMedCrossRefGoogle Scholar
  12. 12.
    Kumar A, Doherty B (1993) Biomechanical testing of vertebral endplates strength: a cadaver study. NASS 8th Annual Meeting, San DiegoGoogle Scholar
  13. 13.
    Li JY, Zhu QA, Zhao WD, Lin LJ, Zhang MC, Huang WH (2003) Role of the biomechanical property of the endplate in anterior cervical fusion. Di Yi Jun Yi Da Xue Xue Bao 23(5):402–408PubMedGoogle Scholar
  14. 14.
    Lim TH, Kwon H, Jeon CH, Kim JG, Sokolowski M, Natarajan R, An HS, Andersson GB (2001) Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion. Spine 26:951–956PubMedCrossRefGoogle Scholar
  15. 15.
    Link HD, McAfee PC, Pimenta L (2004) Choosing a cervical disc replacement. Spine J 4(Suppl):294S–302SPubMedCrossRefGoogle Scholar
  16. 16.
    Lowe TG, Shukor H, Wilson LA, O´Brien MF, Smith DAB, Diekmann MJ, Trommeter J (2004) A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support. Spine 29:2389–2394PubMedCrossRefGoogle Scholar
  17. 17.
    McAfee P (1999) Interbody fusion cages in reconstructive operations on the spine. J Bone Joint Surg Am 81:859–880PubMedGoogle Scholar
  18. 18.
    Millard J, Augart P, Link T, Kothari M, Newitt DC, Genant HK, Majumdar S (1998) Power spectral analysis of vertebral trabecular bone structure from radiographs: orientation dependence and correlation with bone mineral density and mechanical properties. Calcif Tissue Int 63:482–489PubMedCrossRefGoogle Scholar
  19. 19.
    Mosekilde L (1993) Vertebral structure and strength in vivo and in vitro. Calcif Tissue Int 53(Suppl 1):S121–S125, discussion S125–S126PubMedCrossRefGoogle Scholar
  20. 20.
    Mosekilde L, Mosekilde L, Danielsen CC (1987) Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8:79–85PubMedCrossRefGoogle Scholar
  21. 21.
    Muller-Gerbl M (1998) The subchondral bone plate. Adv Anat Embryol Cell Biol 141(III–XI):1–134Google Scholar
  22. 22.
    Muller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1989) Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints. Skeletal Radiol 18:507–512PubMedCrossRefGoogle Scholar
  23. 23.
    Muller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1990) Computed tomography-osteoabsorptiometry: a method of assessing the mechanical condition of the major joints in a living subject. Clin Biomech 5:193–198CrossRefGoogle Scholar
  24. 24.
    Muller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1990) Demonstration of subchondral density pattern using CT-osteoabsorptiometry (CT-OAM) for the assessment of individual joint stress in live patients. Z Orthop Ihre Grenzgeb 128:128–133PubMedCrossRefGoogle Scholar
  25. 25.
    Muller-Gerbl M, Putz R, Kenn R (1992) Demonstration of subchondral bone density patterns by three-dimensional CT osteoabsorptiometry as a noninvasive method for in vivo assessment of individual long-term stresses in joints. J Bone Miner Res 2:S411–S418CrossRefGoogle Scholar
  26. 26.
    Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328PubMedCrossRefGoogle Scholar
  27. 27.
    Overaker D, Langrana NA, Cuitino A (1999) Finite element analysis of vertebral body mechanics with a nonlinear microstructural model for the trabecular core. J Biomech Eng 121:542–550PubMedCrossRefGoogle Scholar
  28. 28.
    Oxland TR, Grant JP, Dvorak MF, Fisher CG (2003) Effects of endplate removal on the structural properties of the lower lumbar vertebral bodies. Spine 28:771–777PubMedCrossRefGoogle Scholar
  29. 29.
    Panjabi MM, Chen NC, Shin EK, Wang J-L (2001) The cortical shell architecture of human cervical vertebral bodies. Spine 26:2478–2484PubMedCrossRefGoogle Scholar
  30. 30.
    Pitzen T, Schmitz B, Georg T, Barbier D, Beuter T, Steudel WI, Reith W (2004) Variation of endplate thickness in the cervical spine. Eur Spine J 13:235–240PubMedCrossRefGoogle Scholar
  31. 31.
    Polikeit A, Ferguson SJ, Nolte LP, Orr TE (2003) The importance of the endplate for interbody cages in the lumbar spine. Eur Spine J 12:556–561PubMedCrossRefGoogle Scholar
  32. 32.
    Porto Filho MR, Pastorello MT, Defino HL (2005) Experimental study of the participation of the vertebral endplate in the integration of bone grafts. Eur Spine J 14:965–970PubMedCrossRefGoogle Scholar
  33. 33.
    Putz R (1981) Funktionelle Anatomie der Halswirbelsäule. Normale und Pathologische Anatomie 43. Thieme, StuttgartGoogle Scholar
  34. 34.
    Roberts S, McCall IW, Menage J, Haddaway MJ, Eisenstein SM (1997) Does the thickness of the vertebral subchondral bone reflect the composition of the intervertebral disc? Eur Spine J 6:385–389PubMedCrossRefGoogle Scholar
  35. 35.
    Roberts S, Menage J, Urban JPG (1989) Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 14:166–174PubMedCrossRefGoogle Scholar
  36. 36.
    Schmitz B, Pitzen T, Beuter T, Steudel WI, Reith W (2004) Regional variations in the thickness of cervical spine endplates as measured by computed tomography. Acta Radiol 45:53–58PubMedCrossRefGoogle Scholar
  37. 37.
    Steffen T, Tsantrizos A, Aebi M (2000) Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs. Spine 25:1077–1084PubMedCrossRefGoogle Scholar
  38. 38.
    van Dieen J, Kingma I, Meijer R, Hänsel L, Huiskes R (2001) Stress distribution changes in bovine vertebrae just below the endplate after sustained loading. Clin Biomech 16(Suppl 1):S135–S142Google Scholar
  39. 39.
    Wenger K, Pross A, Wilke H-J, Gossee F, Vahldiek M, Claes LE (1999) Bone mineral density of the vertebral endplate: an in vitro comparison of normals, degeneratives and osteoporotics. 26th Annual Meeting, ISSLS, KonaGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Magdalena Müller-Gerbl
    • 1
  • Stefan Weißer
    • 2
  • Ulrich Linsenmeier
    • 3
  1. 1.Anatomical InstituteUniversity of BaselBaselSwitzerland
  2. 2.Anatomical InstituteUniversity of MunichMunichGermany
  3. 3.Department of Clinical RadiologyLudwig-Maximilians UniversityMunichGermany

Personalised recommendations