European Spine Journal

, Volume 17, Issue 5, pp 715–725 | Cite as

En bloc spondylectomy reconstructions in a biomechanical in-vitro study

  • A. C. Disch
  • K. D. Schaser
  • I. Melcher
  • A. Luzzati
  • F. Feraboli
  • W. Schmoelz
Original Article


Wide surgical margins make en bloc spondylectomy and stabilization a referred treatment for certain tumoral lesions. With a total resection of a vertebra, the removal of the segment’s stabilizing structures is complete and the instrumentation guidelines derived from a thoracolumbar corpectomy may not apply. The influence of one or two adjacent segment instrumentation, adjunct anterior plate stabilization and vertebral body replacement (VBR) designs on post-implantational stability was investigated in an in-vitro en bloc spondylectomy model. Biomechanical in-vitro testing was performed in a six degrees of freedom spine simulator using six human thoracolumbar spinal specimens with an age at death of 64 (±20) years. Following en bloc spondylectomy eight stabilization techniques were performed using long and short posterior instrumentation, two VBR systems [(1) an expandable titanium cage; (2) a connected long carbon fiber reinforced composite VBR pedicle screw system)] and an adjunct anterior plate. Test-sequences were loaded with pure moments (±7.5 Nm) in the three planes of motion. Intersegmental motion was measured between Th12 and L2, using an ultrasound based analysis system. In flexion/extension, long posterior fixations showed significantly less range of motion (ROM) than the short posterior fixations. In axial rotation and extension, the ROM of short posterior fixation was equivalent or higher when compared to the intact state. There were only small, nonsignificant ROM differences between the long carbon fiber VBR and the expandable system. Antero-lateral plating stabilized short posterior fixations, but did not markedly effect long construct stability. Following thoracolumbar en bloc spondylectomy, it is the posterior fixation of more than one adjacent segment that determines stability. In contrast, short posterior fixation does not sufficiently restore stability, even with an antero-lateral plate. Expandable verses nonexpandable VBR system design does not markedly affect stability.


En bloc spondylectomy Biomechanical Reconstruction Stability 


  1. 1.
    Abe E, Sato K, Murai H, Tazawa H, Chiba M, Okuyama K (2000) Total spondylectomy for solitary spinal metastasis of the thoracolumbar spine: a preliminary report. Tohoku J Exp Med 190(1):33–49PubMedCrossRefGoogle Scholar
  2. 2.
    Abrams HL, Spiro R, Goldstein N (1950) Metastases in carcinoma; analysis of 1000 autopsied cases. Cancer 3(1):74–85PubMedCrossRefGoogle Scholar
  3. 3.
    Adams MA, Bogduk N, Burton K, Dolan P (2006) The biomechanics of back pain. 2nd edn. Churchill Livingstone, Edingburgh, p 108Google Scholar
  4. 4.
    Akamaru T, Kawahara N, Sakamoto J, Yoshida A, Murakami H, Hato T, Awamori S, Oda J, Tomita K (2005) The transmission of stress to grafted bone inside a titanium mesh cage used in anterior column reconstruction after total spondylectomy: a finite-element analysis. Spine 30(24):2783–2787PubMedCrossRefGoogle Scholar
  5. 5.
    Barron KD, Hirano A, Araki S, Terry RD (1959) Experiences with metastatic neoplasms involving the spinal cord. Neurology 9(2):91–106PubMedGoogle Scholar
  6. 6.
    Bergot C, Laval-Jeantet AM, Hutchinson K, Dautraix I, Caulin F, Genant HK (2001) A comparison of spinal quantitative computed tomography with dual energy X-ray absorptiometry in European women with vertebral and nonvertebral fractures. Calcif Tissue Int 68(2):74–82PubMedCrossRefGoogle Scholar
  7. 7.
    Boriani S, Biagini R, De Iure F, Bertoni F, Malaguti MC, Di Fiore M, Zanoni A (1996) En bloc resections of bone tumors of the thoracolumbar spine. A preliminary report on 29 patients. Spine 21(16):1927–1931PubMedCrossRefGoogle Scholar
  8. 8.
    Boriani S, Weinstein JN, Biagini R (1997) Primary bone tumors of the spine. Terminology and surgical staging. Spine 22(9):1036–1044PubMedCrossRefGoogle Scholar
  9. 9.
    Bouchard JA, Koka A, Bensusan JS, Stevenson S, Emery SE (1994) Effects of irradiation on posterior spinal fusions. A rabbit model. Spine 19(16):1836–1841PubMedCrossRefGoogle Scholar
  10. 10.
    Brodke DS, Gollogly S, Bachus KN, Alexander Mohr R, Nguyen BK (2003) Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Spine 28(16):1794–1801PubMedCrossRefGoogle Scholar
  11. 11.
    Chou D, Larios AE, Chamberlain RH, Fifield MS, Hartl R, Dickman CA, Sonntag VK, Crawford NR (2006) A biomechanical comparison of three anterior thoracolumbar implants after corpectomy: are two screws better than one? J Neurosurg Spine 4(3):213–218PubMedCrossRefGoogle Scholar
  12. 12.
    Cybulski GR, Von Roenn KA, D’Angelo CM, DeWald RL (1987) Luque rod stabilization for metastatic disease of the spine. Surg Neurol 28(4):277–283PubMedCrossRefGoogle Scholar
  13. 13.
    Dick JC, Brodke DS, Zdeblick TA, Bartel BD, Kunz DN, Rapoff AJ (1997) Anterior instrumentation of the thoracolumbar spine. A biomechanical comparison. Spine 22(7):744–750PubMedCrossRefGoogle Scholar
  14. 14.
    Disch AC, Melcher I, Luzatti A, Haas NP, Schaser KD (2007) Surgical technique of en bloc spondylectomy for solitary metastases of the thoracolumbar spine. Unfallchirurg 110(2):163–170PubMedCrossRefGoogle Scholar
  15. 15.
    Emery SE, Brazinski MS, Koka A, Bensusan JS, Stevenson S (1994) The biological and biomechanical effects of irradiation on anterior spinal bone grafts in a canine model. J Bone Joint Surg Am 76(4):540–548PubMedGoogle Scholar
  16. 16.
    Faro FD, White KK, Ahn JS, Oka RS, Mahar AT, Bawa M, Farnsworth CL, Garfin SR, Newton PO (2003) Biomechanical analysis of anterior instrumentation for lumbar corpectomy. Spine 28(22):E468–E471PubMedCrossRefGoogle Scholar
  17. 17.
    Finkelstein JA, Zaveri G, Wai E, Vidmar M, Kreder H, Chow E (2003) A population-based study of surgery for spinal metastases. Survival rates and complications. J Bone Joint Surg Br 85(7):1045–1050PubMedCrossRefGoogle Scholar
  18. 18.
    Fourney DR, Abi-Said D, Rhines LD, Walsh GL, Lang FF, McCutcheon IE, Gokaslan ZL (2001) Simultaneous anterior-posterior approach to the thoracic and lumbar spine for the radical resection of tumors followed by reconstruction and stabilization. J Neurosurg 94(2 Suppl):232–244PubMedGoogle Scholar
  19. 19.
    Gedet P, Thistlethwaite PA, Ferguson SJ (2007) Minimizing errors during in vitro testing of multisegmental spine specimens: considerations for component selection and kinematic measurement. J Biomech 40(8):1881–1885PubMedCrossRefGoogle Scholar
  20. 20.
    Gokaslan ZL, York JE, Walsh GL, McCutcheon IE, Lang FF, Putnam JB Jr, Wildrick DM, Swisher SG, Abi-Said D, Sawaya R (1998) Transthoracic vertebrectomy for metastatic spinal tumors. J Neurosurg 89(4):599–609PubMedGoogle Scholar
  21. 21.
    Gradl G (2006) Combined stabilization of thoracolumbar spine fractures. Eur J Trauma 32:249–252CrossRefGoogle Scholar
  22. 22.
    Hammerberg KW (1992) Surgical treatment of metastatic spine disease. Spine 17(10):1148–1153PubMedCrossRefGoogle Scholar
  23. 23.
    Harrington KD (1988) Anterior decompression and stabilization of the spine as a treatment for vertebral collapse and spinal cord compression from metastatic malignancy. Clin Orthop Relat Res Aug(233):177–197Google Scholar
  24. 24.
    Hatrick NC, Lucas JD, Timothy AR, Smith MA (2000) The surgical treatment of metastatic disease of the spine. Radiother Oncol 56(3):335–339PubMedCrossRefGoogle Scholar
  25. 25.
    Heller JG, Zdeblick TA, Kunz DA, McCabe R, Cooke ME (1993) Spinal instrumentation for metastatic disease: in vitro biomechanical analysis. J Spinal Disord 6(1):17–22PubMedCrossRefGoogle Scholar
  26. 26.
    Holman PJ, Suki D, McCutcheon I, Wolinsky JP, Rhines LD, Gokaslan ZL (2005) Surgical management of metastatic disease of the lumbar spine: experience with 139 patients. J Neurosurg Spine 2(5):550–563PubMedCrossRefGoogle Scholar
  27. 27.
    James KS, Wenger KH, Schlegel JD, Dunn HK (1994) Biomechanical evaluation of the stability of thoracolumbar burst fractures. Spine 19(15):1731–1740PubMedCrossRefGoogle Scholar
  28. 28.
    Kanayama M, Ng JT, Cunningham BW, Abumi K, Kaneda K, McAfee PC (1999) Biomechanical analysis of anterior versus circumferential spinal reconstruction for various anatomic stages of tumor lesions. Spine 24(5):445–450PubMedCrossRefGoogle Scholar
  29. 29.
    Knoller SM, Meyer G, Eckhardt C, Lill CA, Schneider E, Linke B (2005) Range of motion in reconstruction situations following corpectomy in the lumbar spine: a question of bone mineral density? Spine 30(9):E229–E235PubMedCrossRefGoogle Scholar
  30. 30.
    Knop C, Bastian L, Lange U, Oeser M, Zdichavsky M, Blauth M (2002) Complications in surgical treatment of thoracolumbar injuries. Eur Spine J 11(3):214–226PubMedCrossRefGoogle Scholar
  31. 31.
    Knop C, Lange U, Bastian L, Blauth M (2000) Three-dimensional motion analysis with Synex. Comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine. Eur Spine J 9(6):472–485PubMedCrossRefGoogle Scholar
  32. 32.
    Krepler P, Windhager R, Bretschneider W, Toma CD, Kotz R (2002) Total vertebrectomy for primary malignant tumours of the spine. J Bone Joint Surg Br 84(5):712–715PubMedCrossRefGoogle Scholar
  33. 33.
    Lee CK, Rosa R, Fernand R (1986) Surgical treatment of tumors of the spine. Spine 11(3):201–208PubMedCrossRefGoogle Scholar
  34. 34.
    MacMillan M, Glowczewskie F (1995) Biomechanical analysis of a new anterior spine implant for post-corpectomy instability. J Spinal Disord 8(1):56–61PubMedCrossRefGoogle Scholar
  35. 35.
    Magerl F, Coscia MF (1988) Total posterior vertebrectomy of the thoracic or lumbar spine. Clin Orthop Relat Res Jul(232):62–69Google Scholar
  36. 36.
    McLain RF (2006) The biomechanics of long versus short fixation for thoracolumbar spine fractures. Spine 31(11 Suppl):S70–S79; discussion S104PubMedCrossRefGoogle Scholar
  37. 37.
    Melcher I, Disch AC, Khodadadyan-Klostermann C, Tohtz S, Smolny M, Stockle U, Haas NP, Schaser KD (2007) Primary malignant bone tumors and solitary metastases of the thoracolumbar spine: results by management with total en bloc spondylectomy. Eur Spine J 16(8):1193–1202PubMedCrossRefGoogle Scholar
  38. 38.
    Oda I, Cunningham BW, Abumi K, Kaneda K, McAfee PC (1999) The stability of reconstruction methods after thoracolumbar total spondylectomy. An in vitro investigation. Spine 24(16):1634–1638PubMedCrossRefGoogle Scholar
  39. 39.
    Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13(10):1129–1134PubMedCrossRefGoogle Scholar
  40. 40.
    Panjabi MM, Krag M, Summers D, Videman T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3(3):292–300PubMedCrossRefGoogle Scholar
  41. 41.
    Patwardhan AG, Havey RM, Carandang G, Simonds J, Voronov LI, Ghanayem AJ, Meade KP, Gavin TM, Paxinos O (2003) Effect of compressive follower preload on the flexion-extension response of the human lumbar spine. J Orthop Res 21(3):540–546PubMedCrossRefGoogle Scholar
  42. 42.
    Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B (1999) A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 24(10):1003–1009PubMedCrossRefGoogle Scholar
  43. 43.
    Pflugmacher R, Schleicher P, Schaefer J, Scholz M, Ludwig K, Khodadadyan-Klostermann C, Haas NP, Kandziora F (2004) Biomechanical comparison of expandable cages for vertebral body replacement in the thoracolumbar spine. Spine 29(13):1413–1419PubMedCrossRefGoogle Scholar
  44. 44.
    Phillips E, Levine AM (1989) Metastatic lesions of the upper cervical spine. Spine 14(10):1071–1077PubMedCrossRefGoogle Scholar
  45. 45.
    Renner SM, Natarajan RN, Patwardhan AG, Havey RM, Voronov LI, Guo BY, Andersson GB, An HS (2007) Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine. J Biomech 40(6):1326–1332PubMedCrossRefGoogle Scholar
  46. 46.
    Roy-Camille R, Saillant G, Bisserie M, Judet T, Hautefort E, Mamoudy P (1981) Total excision of thoracic vertebrae (author’s transl). Rev Chir Orthop Reparatrice Appar Mot 67(3):421–430PubMedGoogle Scholar
  47. 47.
    Ryken TC, Eichholz KM, Gerszten PC, Welch WC, Gokaslan ZL, Resnick DK (2003) Evidence-based review of the surgical management of vertebral column metastatic disease. Neurosurg Focus 15(5):E11PubMedCrossRefGoogle Scholar
  48. 48.
    Sakaura H, Hosono N, Mukai Y, Ishii T, Yonenobu K, Yoshikawa H (2004) Outcome of total en bloc spondylectomy for solitary metastasis of the thoracolumbar spine. J Spinal Disord Tech 17(4):297–300PubMedCrossRefGoogle Scholar
  49. 49.
    Schreiber U, Bence T, Grupp T, Steinhauser E, Muckley T, Mittelmeier W, Beisse R (2005) Is a single anterolateral screw-plate fixation sufficient for the treatment of spinal fractures in the thoracolumbar junction? A biomechanical in vitro investigation. Eur Spine J 14(2):197–204PubMedCrossRefGoogle Scholar
  50. 50.
    Shannon FJ, DiResta GR, Ottaviano D, Castro A, Healey JH, Boland PJ (2004) Biomechanical analysis of anterior poly-methyl-methacrylate reconstruction following total spondylectomy for metastatic disease. Spine 29(19):2096–2012PubMedCrossRefGoogle Scholar
  51. 51.
    Stener B (1989) Complete removal of vertebrae for extirpation of tumors. A 20-year experience. Clin Orthop Relat Res Aug(245):72–82Google Scholar
  52. 52.
    Stener B (1971) Total spondylectomy in chondrosarcoma arising from the seventh thoracic vertebra. J Bone Joint Surg Br 53(2):288–295PubMedGoogle Scholar
  53. 53.
    Sundaresan N, Boriani S, Rothman A, Holtzman R (2004) Tumors of the osseous spine. J Neurooncol 69(1–3):273–290PubMedCrossRefGoogle Scholar
  54. 54.
    Sundaresan N, Rothman A, Manhart K, Kelliher K (2002) Surgery for solitary metastases of the spine: rationale and results of treatment. Spine 27(16):1802–1806PubMedCrossRefGoogle Scholar
  55. 55.
    Tawackoli W, Marco R, Liebschner MA (2004) The effect of compressive axial preload on the flexibility of the thoracolumbar spine. Spine 29(9):988–993PubMedCrossRefGoogle Scholar
  56. 56.
    Tokuhashi Y, Matsuzaki H, Oda H, Oshima M, Ryu J (2005) A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine 30(19):2186–2191PubMedCrossRefGoogle Scholar
  57. 57.
    Tokuhashi Y, Matsuzaki H, Toriyama S, Kawano H, Ohsaka S (1990) Scoring system for the preoperative evaluation of metastatic spine tumor prognosis. Spine 15(11):1110–1113PubMedCrossRefGoogle Scholar
  58. 58.
    Tomita K, Kawahara N, Baba H, Tsuchiya H, Fujita T, Toribatake Y (1997) Total en bloc spondylectomy. A new surgical technique for primary malignant vertebral tumors. Spine 22(3):324–333PubMedCrossRefGoogle Scholar
  59. 59.
    Tomita K, Kawahara N, Baba H, Tsuchiya H, Nagata S, Toribatake Y (1994) Total en bloc spondylectomy for solitary spinal metastases. Int Orthop 18(5):291–298PubMedCrossRefGoogle Scholar
  60. 60.
    Tomita K, Kawahara N, Kobayashi T, Yoshida A, Murakami H, Akamaru T (2001) Surgical strategy for spinal metastases. Spine 26(3):298–306PubMedCrossRefGoogle Scholar
  61. 61.
    Tomita K, Kawahara N, Murakami H, Demura S (2006) Total en bloc spondylectomy for spinal tumors: improvement of the technique and its associated basic background. J Orthop Sci 11(1):3–12PubMedCrossRefGoogle Scholar
  62. 62.
    Tomita K, Toribatake Y, Kawahara N, Ohnari H, Kose H (1994) Total en bloc spondylectomy and circumspinal decompression for solitary spinal metastasis. Paraplegia 32(1):36–46PubMedGoogle Scholar
  63. 63.
    Vahldiek MJ, Panjabi MM (1998) Stability potential of spinal instrumentations in tumor vertebral body replacement surgery. Spine 23(5):543–550PubMedCrossRefGoogle Scholar
  64. 64.
    Weigel B, Maghsudi M, Neumann C, Kretschmer R, Muller FJ, Nerlich M (1999) Surgical management of symptomatic spinal metastases. Postoperative outcome and quality of life. Spine 24(21):2240–2246PubMedCrossRefGoogle Scholar
  65. 65.
    Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251(1):15–19PubMedCrossRefGoogle Scholar
  66. 66.
    Wilke HJ, Rohlmann A, Neller S, Schultheiss M, Bergmann G, Graichen F, Claes LE (2001) Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load components in an internal fixator. Spine 26(6):636–642PubMedCrossRefGoogle Scholar
  67. 67.
    Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154PubMedCrossRefGoogle Scholar
  68. 68.
    Wise JJ, Fischgrund JS, Herkowitz HN, Montgomery D, Kurz LT (1999) Complication, survival rates, and risk factors of surgery for metastatic disease of the spine. Spine 24(18):1943–1951PubMedCrossRefGoogle Scholar
  69. 69.
    Wong DA, Fornasier VL, MacNab I (1990) Spinal metastases: the obvious, the occult, and the impostors. Spine 15(1):1–4PubMedCrossRefGoogle Scholar
  70. 70.
    Yao KC, Boriani S, Gokaslan ZL, Sundaresan N (2003) En bloc spondylectomy for spinal metastases: a review of techniques. Neurosurg Focus 15(5):E6PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. C. Disch
    • 1
  • K. D. Schaser
    • 1
  • I. Melcher
    • 1
  • A. Luzzati
    • 3
  • F. Feraboli
    • 3
  • W. Schmoelz
    • 2
  1. 1.Section for Musculoskeletal Tumor Surgery, Center for Musculoskeletal SurgeryCharité-University Medicine BerlinBerlinGermany
  2. 2.Department of Trauma Surgery and Sports MedicineMedical University InnsbruckInnsbruckAustria
  3. 3.Divisione di Ortopedia e TraumatologiaIstituto Ospitalieri CremonaCremonaItaly

Personalised recommendations