European Spine Journal

, Volume 16, Issue 12, pp 2174–2185 | Cite as

A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat

  • Cynthia R. Lee
  • Daisuke Sakai
  • Tomoko Nakai
  • Kanae Toyama
  • Joji Mochida
  • Mauro Alini
  • Sibylle Grad
Original Article

Abstract

The basic molecular characteristics of intervertebral disc cells are still poorly defined. This study compared the phenotypes of nucleus pulposus (NP), annulus fibrosus (AF) and articular cartilage (AC) cells using rat coccygeal discs and AC from both young and aged animals and a combination of microarray, real-time RT-PCR and immunohistochemistry. Microarray analysis identified 63 genes with at least a fivefold difference in fluorescence intensity between the NP and AF cells and 41 genes with a fivefold or greater difference comparing NP cells and articular chondrocytes. In young rats, the relative mRNA levels, assessed by real-time RT-PCR, of annexin A3, glypican 3 (gpc3), keratin 19 (k19) and pleiotrophin (ptn) were significantly higher in NP compared to AF and AC samples. Furthermore, vimentin (vim) mRNA was higher in NP versus AC, and expression levels of cartilage oligomeric matrix protein (comp) and matrix gla protein (mgp) were lower in NP versus AC. Higher NP levels of comp and mgp mRNA and higher AF levels of gpc3, k19, mgp and ptn mRNA were found in aged compared to young tissue. However, the large differences between NP and AC expression of gpc3 and k19 were obvious even in the aged animals. Furthermore, the differences in expression levels of gpc3 and k19 were also evident at the protein level, with intense immunostaining for both proteins in NP and non-existent immunoreaction in AF and AC. Future studies using different species are required to evaluate whether the expression of these molecules can be used to characterize NP cells and distinguish them from other chondrocyte-like cells.

Keywords

Nucleus pulposus Articular cartilage Phenotype expression Glypican 3 Keratin 19 

References

  1. 1.
    Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M (1996) The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003PubMedCrossRefGoogle Scholar
  2. 2.
    Barone LM, Owen TA, Tassinari MS, Bortell R, Stein GS, Lian JB (1991) Developmental expression and hormonal regulation of the rat matrix Gla protein (MGP) gene in chondrogenesis and osteogenesis. J Cell Biochem 46:351–365PubMedCrossRefGoogle Scholar
  3. 3.
    Bruehlmann SB, Rattner JB, Matyas JR, Duncan NA (2002) Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc. J Anat 201:159–171PubMedCrossRefGoogle Scholar
  4. 4.
    Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine 20:1307–1314PubMedGoogle Scholar
  5. 5.
    Buckwalter JA, Cooper RR, Maynard JA (1976) Elastic fibers in human intervertebral discs. J Bone Joint Surg Am 58:73–76PubMedGoogle Scholar
  6. 6.
    Buckwalter JA, Smith KC, Kazarien LE, Rosenberg LC, Ungar R (1989) Articular cartilage and intervertebral disc proteoglycans differ in structure: an electron microscopic study. J Orthop Res 7:146–151PubMedCrossRefGoogle Scholar
  7. 7.
    Chen J, Yan W, Setton LA (2004) Static compression induces zonal-specific changes in gene expression for extracellular matrix and cytoskeletal proteins in intervertebral disc cells in vitro. Matrix Biol 22:573–583PubMedCrossRefGoogle Scholar
  8. 8.
    Dicesare PE, Morgelin M, Mann K, Paulsson M (1994) Cartilage oligomeric matrix protein and thrombospondin 1. Purification from articular cartilage, electron microscopic structure, and chondrocyte binding. Eur J Biochem 223:927–937PubMedCrossRefGoogle Scholar
  9. 9.
    Eyre DR (1979) Biochemistry of the intervertebral disc. Int Rev Connect Tissue Res 8:227–291PubMedGoogle Scholar
  10. 10.
    Filmus J, Selleck SB (2001) Glypicans: proteoglycans with a surprise. J Clin Invest 108:497–501PubMedCrossRefGoogle Scholar
  11. 11.
    Fujita N, Miyamoto T, Imai J, Hosogane N, Suzuki T, Yagi M, Morita K, Ninomiya K, Miyamoto K, Takaishi H, Matsumoto M, Morioka H, Yabe H, Chiba K, Watanabe S, Toyama Y, Suda T (2005) CD24 is expressed specifically in the nucleus pulposus of intervertebral discs. Biochem Biophys Res Commun 338:1890–1896PubMedCrossRefGoogle Scholar
  12. 12.
    Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371PubMedGoogle Scholar
  13. 13.
    Gonzalez AD, Kaya M, Shi W, Song H, Testa JR, Penn LZ, Filmus J (1998) OCI-5/GPC3, a glypican encoded by a gene that is mutated in the Simpson-Golabi-Behmel overgrowth syndrome, induces apoptosis in a cell line-specific manner. J Cell Biol 141:1407–1414PubMedCrossRefGoogle Scholar
  14. 14.
    Gottschalk D, Fehn M, Patt S, Saeger W, Kirchner T, Aigner T (2001) Matrix gene expression analysis and cellular phenotyping in chordoma reveals focal differentiation pattern of neoplastic cells mimicking nucleus pulposus development. Am J Pathol 158:1571–1578PubMedGoogle Scholar
  15. 15.
    Hale JE, Fraser JD, Price PA (1988) The identification of matrix Gla protein in cartilage. J Biol Chem 263:5820–5824PubMedGoogle Scholar
  16. 16.
    Hirakawa K, Hirota S, Ikeda T, Yamaguchi A, Takemura T, Nagoshi J, Yoshiki S, Suda T, Kitamura Y, Nomura S (1994) Localization of the mRNA for bone matrix proteins during fracture healing as determined by in situ hybridization. J Bone Miner Res 9:1551–1557PubMedCrossRefGoogle Scholar
  17. 17.
    Iatridis JC, Weidenbaum M, Setton LA, Mow VC (1996) Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Spine 21:1174–1184PubMedCrossRefGoogle Scholar
  18. 18.
    Inoue H (1981) Three-dimensional architecture of lumbar intervertebral discs. Spine 6:139–146PubMedCrossRefGoogle Scholar
  19. 19.
    Inoue H, Takeda T (1975) Three-dimensional observation of collagen framework of lumbar intervertebral discs. Acta Orthop Scand 46:949–956PubMedCrossRefGoogle Scholar
  20. 20.
    Ishii Y, Thomas AO, Guo XE, Hung CT, Chen FH (2006) Localization and distribution of cartilage oligomeric matrix protein in the rat intervertebral disc. Spine 31:1539–1546PubMedCrossRefGoogle Scholar
  21. 21.
    Johnson WE, Roberts S (2003) Human intervertebral disc cell morphology and cytoskeletal composition: a preliminary study of regional variations in health and disease. J Anat 203:605–612PubMedCrossRefGoogle Scholar
  22. 22.
    Langelier E, Suetterlin R, Hoemann CD, Aebi U, Buschmann MD (2000) The chondrocyte cytoskeleton in mature articular cartilage: structure and distribution of actin, tubulin, and vimentin filaments. J Histochem Cytochem 48:1307–1320PubMedGoogle Scholar
  23. 23.
    Lawton DM, Andrew JG, Marsh DR, Hoyland JA, Freemont AJ (1999) Expression of the gene encoding the matrix gla protein by mature osteoblasts in human fracture non-unions. Mol Pathol 52:92–96PubMedCrossRefGoogle Scholar
  24. 24.
    Loeser R, Carlson CS, Tulli H, Jerome WG, Miller L, Wallin R (1992) Articular-cartilage matrix gamma-carboxyglutamic acid-containing protein. Characterization and immunolocalization. Biochem J 282(Pt 1):1–6PubMedGoogle Scholar
  25. 25.
    Luo X, Pietrobon R, Sun SX, Liu GG, Hey L (2004) Estimates and patterns of direct health care expenditures among individuals with back pain in the United States. Spine 29:79–86PubMedCrossRefGoogle Scholar
  26. 26.
    Luoma K, Riihimaki H, Luukkonen R, Raininko R, Viikari-Juntura E, Lamminen A (2000) Low back pain in relation to lumbar disc degeneration. Spine 25:487–492PubMedCrossRefGoogle Scholar
  27. 27.
    Lyons G, Eisenstein SM, Sweet MB (1981) Biochemical changes in intervertebral disc degeneration. Biochim Biophys Acta 673:443–453PubMedGoogle Scholar
  28. 28.
    Marchand F, Ahmed AM (1990) Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 15:402–410PubMedCrossRefGoogle Scholar
  29. 29.
    Mariani S, Iughetti L, Bertorelli R, Coviello D, Pellegrini M, Forabosco A, Bernasconi S (2003) Genotype/phenotype correlations of males affected by Simpson-Golabi-Behmel syndrome with GPC3 gene mutations: patient report and review of the literature. J Pediatr Endocrinol Metab 16:225–232PubMedGoogle Scholar
  30. 30.
    Miller JA, Schmatz C, Schultz AB (1988) Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. Spine 13:173–178PubMedCrossRefGoogle Scholar
  31. 31.
    Mwale F, Roughley P, Antoniou J (2004) Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc. Eur Cell Mater 8:58–63PubMedGoogle Scholar
  32. 32.
    Oegema TR Jr (1993) Biochemistry of the intervertebral disc. Clin Sports Med 12:419–439PubMedGoogle Scholar
  33. 33.
    Ohtsuki T, Furuya S, Yamada T, Nomura S, Hata J, Yabe Y, Hosoda Y (1998) Gene expression of noncollagenous bone matrix proteins in the limb joints and intervertebral disks of the twy mouse. Calcif Tissue Int 63:167–172PubMedCrossRefGoogle Scholar
  34. 34.
    Pellegrini M, Pilia G, Pantano S, Lucchini F, Uda M, Fumi M, Cao A, Schlessinger D, Forabosco A (1998) Gpc3 expression correlates with the phenotype of the Simpson-Golabi-Behmel syndrome. Dev Dyn 213:431–439PubMedCrossRefGoogle Scholar
  35. 35.
    Poiraudeau S, Monteiro I, Anract P, Blanchard O, Revel M, Corvol MT (1999) Phenotypic characteristics of rabbit intervertebral disc cells. Comparison with cartilage cells from the same animals. Spine 24:837–844PubMedCrossRefGoogle Scholar
  36. 36.
    Pufe T, Bartscher M, Petersen W, Tillmann B, Mentlein R (2003) Pleiotrophin, an embryonic differentiation and growth factor, is expressed in osteoarthritis. Osteoarthr Cartil 11:260–264PubMedCrossRefGoogle Scholar
  37. 37.
    Reno C, Marchuk L, Sciore P, Frank CB, Hart DA (1997) Rapid isolation of total RNA from small samples of hypocellular, dense connective tissues. Biotechniques 22:1082–1086PubMedGoogle Scholar
  38. 38.
    Risbud MV, Guttapalli A, Stokes DG, Hawkins D, Danielson KG, Schaer TP, Albert TJ, Shapiro IM (2006) Nucleus pulposus cells express HIF-1alpha under normoxic culture conditions: a metabolic adaptation to the intervertebral disc microenvironment. J Cell Biochem 98:152–159PubMedCrossRefGoogle Scholar
  39. 39.
    Rosenberg K, Olsson H, Morgelin M, Heinegard D (1998) Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem 273:20397–20403PubMedCrossRefGoogle Scholar
  40. 40.
    Schwarzer AC, Aprill CN, Derby R, Fortin J, Kine G, Bogduk N (1994) The relative contributions of the disc and zygapophyseal joint in chronic low back pain. Spine 19:801–806PubMedCrossRefGoogle Scholar
  41. 41.
    Semenza GL, Agani F, Booth G, Forsythe J, Iyer N, Jiang BH, Leung S, Roe R, Wiener C, Yu A (1997) Structural and functional analysis of hypoxia-inducible factor 1. Kidney Int 51:553–555PubMedCrossRefGoogle Scholar
  42. 42.
    Song HH, Filmus J (2002) The role of glypicans in mammalian development. Biochim Biophys Acta 1573:241–246PubMedGoogle Scholar
  43. 43.
    Stevens JW, Kurriger GL, Carter AS, Maynard JA (2000) CD44 expression in the developing and growing rat intervertebral disc. Dev Dyn 219:381–390PubMedCrossRefGoogle Scholar
  44. 44.
    Stosiek P, Kasper M, Karsten U (1988) Expression of cytokeratin and vimentin in nucleus pulposus cells. Differentiation 39:78–81PubMedCrossRefGoogle Scholar
  45. 45.
    Tapp H, Hernandez DJ, Neame PJ, Koob TJ (1999) Pleiotrophin inhibits chondrocyte proliferation and stimulates proteoglycan synthesis in mature bovine cartilage. Matrix Biol 18:543–556PubMedCrossRefGoogle Scholar
  46. 46.
    Tare RS, Oreffo RO, Clarke NM, Roach HI (2002) Pleiotrophin/Osteoblast-stimulating factor 1: dissecting its diverse functions in bone formation. J Bone Miner Res 17:2009–2020PubMedCrossRefGoogle Scholar
  47. 47.
    Trout JJ, Buckwalter JA, Moore KC (1982) Ultrastructure of the human intervertebral disc: II. Cells of the nucleus pulposus. Anat Rec 204: 307–314PubMedCrossRefGoogle Scholar
  48. 48.
    Trout JJ, Buckwalter JA, Moore KC, Landas SK (1982) Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age. Tissue Cell 14:359–369PubMedCrossRefGoogle Scholar
  49. 49.
    Viebahn C, Lane EB, Ramaekers FC (1988) Keratin and vimentin expression in early organogenesis of the rabbit embryo. Cell Tissue Res 253:553–562PubMedCrossRefGoogle Scholar
  50. 50.
    Yu J, Winlove PC, Roberts S, Urban JP (2002) Elastic fibre organization in the intervertebral discs of the bovine tail. J Anat 201:465–475PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang H, Marshall KW, Tang H, Hwang DM, Lee M, Liew CC (2003) Profiling genes expressed in human fetal cartilage using 13,155 expressed sequence tags. Osteoarthr Cartil 11:309–319PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Cynthia R. Lee
    • 1
    • 2
  • Daisuke Sakai
    • 3
  • Tomoko Nakai
    • 3
  • Kanae Toyama
    • 3
  • Joji Mochida
    • 3
  • Mauro Alini
    • 1
  • Sibylle Grad
    • 1
  1. 1.Biomaterials and Tissue Engineering ProgramAO Research InstituteDavos PlatzSwitzerland
  2. 2.Johnson & Johnson Regenerative TherapeuticsRaynhamUSA
  3. 3.Department of Orthopaedic SurgeryTokai University School of MedicineIsehara, KanagawaJapan

Personalised recommendations