European Spine Journal

, Volume 16, Supplement 2, pp 115–129 | Cite as

Current approach on spinal cord monitoring: the point of view of the neurologist, the anesthesiologist and the spine surgeon

  • Thomas N. Pajewski
  • Vincent ArletEmail author
  • Lawrence H. Phillips


Optimal outcome in spine surgery is dependent of the coordination of efforts by the surgeon, anesthesiologist, and neurophysiologist. This is perhaps best illustrated by the rising use of intraoperative spinal cord monitoring for complex spine surgery. The challenges presented by neurophysiologic monitoring, in particular the use of somatosensory and motor evoked potentials, requires an understanding by each member for the team of the proposed operative procedure as well as an ability to help differentiate clinically important signal changes from false positive changes. Surgical, anesthetic, and monitoring issues need to be addressed when relying on this form of monitoring to reduce the potential of negative outcomes in spine surgery. This article provides a practical overview from the perspective of the neurophysiologist, the anesthesiologist, and the surgeon on the requirements which must be understood by these participants in order to successfully contribute to a positive outcome when a patient is undergoing complex spine surgery.


Anesthesia Spine surgery Spinal cord monitoring Somatosensory evoked potentials Motor evoked potentials 


Conflict of interest statement None of the authors has any potential conflict of interest.


  1. 1.
    Adams DC, Emerson RG, et al (1993) Monitoring of intraoperative motor-evoked potentials under conditions of controlled neuromuscular blockade. Anesth Analg 77(5):913–918PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson DG, Wierzbowski LR, et al (2002) Pedicle screws with high electrical resistance: a potential source of error with stimulus-evoked EMG. Spine 27(14):1577–1581PubMedCrossRefGoogle Scholar
  3. 3.
    Annetta MG, Iemma D, et al (2005) Ketamine: new indications for an old drug. Curr Drug Targets 6(7):789–794PubMedCrossRefGoogle Scholar
  4. 4.
    Auerbach JD, Schwartz DM, et al (2006) Detection of impending neurologic injury during surgery for adolescent idiopathic scoliosis: a comparision of transcranial motor and somatosensory evoked potential monitoring in 1121 consecutive cases. Russel Hibbs Award Winner: Scoliosis Research Society, Monterey, CA, 13–16 Sept 2006Google Scholar
  5. 5.
    Brodkey JS, Richards DE, et al (1972) Reversible spinal cord trauma in cats. Additive effects of direct pressure and ischemia. J Neurosurg 37(5):591–593Google Scholar
  6. 6.
    Brown RH, Nash CL Jr (1979) Current status of spinal cord monitoring. Spine 4(6):466–470PubMedCrossRefGoogle Scholar
  7. 7.
    Burke D, Hicks RG (1998) Surgical monitoring of motor pathways. J Clin Neurophysiol 15(3):194–205PubMedCrossRefGoogle Scholar
  8. 8.
    Calancie B, Klose KJ, et al (1991) Isoflurane-induced attenuation of motor evoked potentials caused by electrical motor cortex stimulation during surgery. J Neurosurg 74(6):897–904PubMedGoogle Scholar
  9. 9.
    Cohan P, Wang C, et al (2005) Acute secondary adrenal insufficiency after traumatic brain injury: a prospective study. Crit Care Med 33(10):2358–2366PubMedCrossRefGoogle Scholar
  10. 10.
    Dawson EG, Sherman JE, et al (1991) Spinal cord monitoring. Results of the Scoliosis Research Society and the European Spinal Deformity Society survey. Spine 16(8 Suppl):S361–S364PubMedGoogle Scholar
  11. 11.
    DiCindio S, Theroux M, et al (2003) Multimodality monitoring of transcranial electric motor and somatosensory-evoked potentials during surgical correction of spinal deformity in patients with cerebral palsy and other neuromuscular disorders. Spine 28(16):1851–1855; discussion 1855–1856Google Scholar
  12. 12.
    Dickerman RD, Guyer R (2006) Intraoperative electromyography for pedicle screws: technique is the key! J Spinal Disord Tech 19(6):463PubMedCrossRefGoogle Scholar
  13. 13.
    Edmonds HL Jr, Paloheimo MP, et al (1989) Transcranial magnetic motor evoked potentials (tcMMEP) for functional monitoring of motor pathways during scoliosis surgery. Spine 14(7):683–683PubMedCrossRefGoogle Scholar
  14. 14.
    Erb TO, Ryhult SE, et al (2005) Improvement of motor-evoked potentials by ketamine and spatial facilitation during spinal surgery in a young child. Anesth Analg 100(6):1634–1636PubMedCrossRefGoogle Scholar
  15. 15.
    Fan D, Schwartz DM, et al (2002) Intraoperative neurophysiologic detection of iatrogenic C5 nerve root injury during laminectomy for cervical compression myelopathy. Spine 27(22):2499–2502PubMedCrossRefGoogle Scholar
  16. 16.
    Fischer LG, Bremer M, et al (2001) Local anesthetics attenuate lysophosphatidic acid-induced priming in human neutrophils. Anesth Analg 92(4):1041–1047PubMedCrossRefGoogle Scholar
  17. 17.
    Gravenstein MA, Sasse F, et al (1992) Effects of hypocapnia on canine spinal, subcortical, and cortical somatosensory-evoked potentials during isoflurane anesthesia. J Clin Monit 8(2):126–130PubMedCrossRefGoogle Scholar
  18. 18.
    Gunnarsson T, Krassioukov AV, et al (2004) Real-time continuous intraoperative electromyographic and somatosensory evoked potential recordings in spinal surgery: correlation of clinical and electrophysiologic findings in a prospective, consecutive series of 213 cases. Spine 29(6):677–684PubMedCrossRefGoogle Scholar
  19. 19.
    Hans P, Dewandre PY, et al (2005) Comparative effects of ketamine on Bispectral Index and spectral entropy of the electroencephalogram under sevoflurane anaesthesia. Br J Anaesth 94(3):336–340PubMedCrossRefGoogle Scholar
  20. 20.
    Harper CM Jr, Daube JR, et al (1988) Lumbar radiculopathy after spinal fusion for scoliosis. Muscle Nerve 11(4):386–391PubMedCrossRefGoogle Scholar
  21. 21.
    Himes RS Jr, DiFazio CA, et al (1977) Effects of lidocaine on the anesthetic requirements for nitrous oxide and halothane. Anesthesiology 47(5):437–440PubMedCrossRefGoogle Scholar
  22. 22.
    Hocking G, Cousins MJ (2003) Ketamine in chronic pain management: an evidence-based review. Anesth Analg 97(6):1730–1739PubMedCrossRefGoogle Scholar
  23. 23.
    Holland NR, Lukaczyk TA, et al (1998) Higher electrical stimulus intensities are required to activate chronically compressed nerve roots. Implications for intraoperative electromyographic pedicle screw testing. Spine 23(2):224–227PubMedCrossRefGoogle Scholar
  24. 24.
    Jameson LC, Sloan TB (2006) Monitoring of the brain and spinal cord. Anesthesiol Clin 24(4):777–791PubMedCrossRefGoogle Scholar
  25. 25.
    Jones SJ, Buonamassa S, et al (2003) Two cases of quadriparesis following anterior cervical discectomy, with normal perioperative somatosensory evoked potentials. J Neurol Neurosurg Psychiatry 74(2):273–276PubMedCrossRefGoogle Scholar
  26. 26.
    Jonsson A, Cassuto J, et al (1991) Inhibition of burn pain by intravenous lignocaine infusion. Lancet 338(8760):151–152PubMedCrossRefGoogle Scholar
  27. 27.
    Kaba A, Laurent SR, et al (2007) Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy. Anesthesiology 106(1):11–18; discussion 5–6PubMedCrossRefGoogle Scholar
  28. 28.
    Kalkman CJ, Drummond JC, et al (1991) Low concentrations of isoflurane abolish motor evoked responses to transcranial electrical stimulation during nitrous oxide/opioid anesthesia in humans. Anesth Analg 73(4):410–415PubMedCrossRefGoogle Scholar
  29. 29.
    Kalkman CJ, Drummond JC, et al (1992) Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology 76(4):502–509PubMedCrossRefGoogle Scholar
  30. 30.
    Kawaguchi M, Sakamoto T, et al (2000) Low dose propofol as a supplement to ketamine-based anesthesia during intraoperative monitoring of motor-evoked potentials. Spine 25(8):974–979PubMedCrossRefGoogle Scholar
  31. 31.
    Kawanishi Y, Munakata H, et al (2007) Usefulness of transcranial motor evoked potentials during thoracoabdominal aortic surgery. Ann Thorac Surg 83(2):456–461PubMedCrossRefGoogle Scholar
  32. 32.
    King SY, Davis FM, et al (1992) Lidocaine for the prevention of pain due to injection of propofol. Anesth Analg 74(2):246–249PubMedCrossRefGoogle Scholar
  33. 33.
    Kunisawa T, Nagata O, et al (2004) A comparison of the absolute amplitude of motor evoked potentials among groups of patients with various concentrations of nitrous oxide. J Anesth 18(3):181–184PubMedCrossRefGoogle Scholar
  34. 34.
    Langeloo DD, Lelivelt A, et al (2003) Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: a study of 145 patients. Spine 28(10):1043–1050PubMedCrossRefGoogle Scholar
  35. 35.
    Leppanen RE, Abnm D, et al (2005) Intraoperative monitoring of segmental spinal nerve root function with free-run and electrically-triggered electromyography and spinal cord function with reflexes and F-responses. A position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput 19(6):437–461PubMedCrossRefGoogle Scholar
  36. 36.
    MacDonald DB (2002) Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 19(5):416–429PubMedCrossRefGoogle Scholar
  37. 37.
    Marsden CD, Merton PA, et al (1983) Direct electrical stimulation of corticospinal pathways through the intact scalp in human subjects. Adv Neurol 39:387–391PubMedGoogle Scholar
  38. 38.
    Merton PA, Morton HB (1980) Electrical stimulation of human motor and visual cortex through the scalp. J Physiol 305:9P–10PGoogle Scholar
  39. 39.
    Nagao S, Roccaforte P, et al (1978) The effects of isovolemic hemodilution and reinfusion of packed erythrocytes on somatosensory and visual evoked potentials. J Surg Res 25(6):530–537PubMedCrossRefGoogle Scholar
  40. 40.
    Nathan N, Tabaraud F, et al (2003) Influence of propofol concentrations on multipulse transcranial motor evoked potentials. Br J Anaesth 91(4):493–497PubMedCrossRefGoogle Scholar
  41. 41.
    Nuwer MR (1999) Spinal cord monitoring. Muscle Nerve 22:1620–1630PubMedCrossRefGoogle Scholar
  42. 42.
    Ofiram E, Lonstein JE, et al (2006) The disappearing evoked potentials”: a special problem of positioning patients with skeletal dysplasia: case report. Spine 31(14):E464–E470PubMedCrossRefGoogle Scholar
  43. 43.
    Oro J, Haghighi SS (1992) Effects of altering core body temperature on somatosensory and motor evoked potentials in rats. Spine 17(5):498–503PubMedCrossRefGoogle Scholar
  44. 44.
    Ozgur BM, Berta S, et al (2006) Automated intraoperative EMG testing during percutaneous pedicle screw placement. Spine J 6(6):708–713PubMedCrossRefGoogle Scholar
  45. 45.
    Padberg AM, Wilson-Holden TJ, et al (1998) Somatosensory- and motor-evoked potential monitoring without a wake-up test during idiopathic scoliosis surgery. An accepted standard of care. Spine 23(12):1392–1400Google Scholar
  46. 46.
    Papin P, Arlet V, et al (1999) Unusual presentation of spinal cord compression related to misplaced pedicle screws in thoracic scoliosis. Eur Spine J 8(2):156–159PubMedCrossRefGoogle Scholar
  47. 47.
    Pechstein U, Cedzich C, et al (1996) Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery 39(2):335–343; discussion 343–344PubMedCrossRefGoogle Scholar
  48. 48.
    Pechstein U, Nadstawek J, et al (1998) Isoflurane plus nitrous oxide versus propofol for recording of motor evoked potentials after high frequency repetitive electrical stimulation. Electroencephalogr Clin Neurophysiol 108(2):175–181PubMedCrossRefGoogle Scholar
  49. 49.
    Pelosi L, Jardine A, et al (1999) Neurological complications of anterior spinal surgery for kyphosis with normal somatosensory evoked potentials (SEPs). J Neurol Neurosurg Psychiatry 66(5):662–664PubMedGoogle Scholar
  50. 50.
    Raynor BL, Lenke LG, et al. (2002) Can triggered electromyograph thresholds predict safe thoracic pedicle screw placement? Spine 27(18):2030–2035PubMedCrossRefGoogle Scholar
  51. 51.
    Sakamoto T, Kawaguchi M, et al (2001) Suppressive effect of nitrous oxide on motor evoked potentials can be reversed by train stimulation in rabbits under ketamine/fentanyl anaesthesia, but not with additional propofol. Br J Anaesth 86(3):395–402PubMedCrossRefGoogle Scholar
  52. 52.
    Sakamoto T, Kawaguchi M, et al (2003) The effect of hypothermia on myogenic motor-evoked potentials to electrical stimulation with a single pulse and a train of pulses under propofol/ketamine/fentanyl anesthesia in rabbits. Anesth Analg 96(6):1692–1697PubMedCrossRefGoogle Scholar
  53. 53.
    Scheufler KM, Zentner J (2002) Total intravenous anesthesia for intraoperative monitoring of the motor pathways: an integral view combining clinical and experimental data. J Neurosurg 96(3):571–579PubMedCrossRefGoogle Scholar
  54. 54.
    Schmid UD, Boll J, et al (1992) Influence of some anesthetic agents on muscle responses to transcranial magnetic cortex stimulation: a pilot study in humans. Neurosurgery 30(1):85–92PubMedCrossRefGoogle Scholar
  55. 55.
    Scholz J, Steinfath M, et al (1996) Clinical pharmacokinetics of alfentanil, fentanyl and sufentanil. An update. Clin Pharmacokinet 31(4):275–292PubMedCrossRefGoogle Scholar
  56. 56.
    Schubert A, Licina MG, et al (1992) Systemic lidocaine and human somatosensory-evoked potentials during sufentanil-isoflurane anaesthesia. Can J Anaesth 39(6):569–575PubMedGoogle Scholar
  57. 57.
    Schwartz DM, Sestokas AK, et al (2006) Neurophysiological identification of position-induced neurologic injury during anterior cervical spine surgery. J Clin Monit Comput 20(6):437–444PubMedCrossRefGoogle Scholar
  58. 58.
    Sekimoto K, Nishikawa K, et al (2006) The effects of volatile anesthetics on intraoperative monitoring of myogenic motor-evoked potentials to transcranial electrical stimulation and on partial neuromuscular blockade during propofol/fentanyl/nitrous oxide anesthesia in humans. J Neurosurg Anesthesiol 18(2):106–111PubMedCrossRefGoogle Scholar
  59. 59.
    Seyal M, Mull B (2002) Mechanisms of signal change during intraoperative somatosensory evoked potential monitoring of the spinal cord. J Clin Neurophysiol 19(5):409–415PubMedCrossRefGoogle Scholar
  60. 60.
    Smith PN, Balzer JR, et al (2007) Intraoperative somatosensory evoked potential monitoring during anterior cervical discectomy and fusion in nonmyelopathic patients—a review of 1,039 cases. Spine J 7(1):83–87PubMedCrossRefGoogle Scholar
  61. 61.
    Sutter M, Eggspühler A, et al (2007) The diagnostic value of multimodal intraoperative monitoring (MIOM) during spine surgery: a prospective study of 1,017 patients. Eur Spine J Suppl 17. (in press). doi: 10.1007/s00586-007-0418-7
  62. 62.
    Tabaraud F, Boulesteix JM, et al (1993) Monitoring of the motor pathway during spinal surgery. Spine 18(5):546–550PubMedCrossRefGoogle Scholar
  63. 63.
    Tamaki T, Takano H, et al (1985) Spinal cord monitoring: basic principles and experimental aspects. Cent Nerv Syst Trauma 2(2):137–149PubMedGoogle Scholar
  64. 64.
    Ulkatan S, Neuwirth M, et al (2006) Monitoring of scoliosis surgery with epidurally recorded motor evoked potentials (D wave) revealed false results. Clin Neurophysiol 117(9):2093–2101PubMedCrossRefGoogle Scholar
  65. 65.
    van Dongen EP, ter Beek HT, et al (1999) Effect of nitrous oxide on myogenic motor potentials evoked by a six pulse train of transcranial electrical stimuli: a possible monitor for aortic surgery. Br J Anaesth 82(3):323–328PubMedGoogle Scholar
  66. 66.
    van Dongen EP, ter Beek HT, et al (1999) Within-patient variability of myogenic motor-evoked potentials to multipulse transcranial electrical stimulation during two levels of partial neuromuscular blockade in aortic surgery. Anesth Analg 88(1):22–27PubMedCrossRefGoogle Scholar
  67. 67.
    van Dongen EP, ter Beek HT, et al (1999) The influence of nitrous oxide to supplement fentanyl/low-dose propofol anesthesia on transcranial myogenic motor-evoked potentials during thoracic aortic surgery. J Cardiothorac Vasc Anesth 13(1):30–34PubMedCrossRefGoogle Scholar
  68. 68.
    Vauzelle C, Stagnara P, et al (1973) Functional monitoring of spinal cord activity during spinal surgery. Clin Orthop Relat Res (93):173–178Google Scholar
  69. 69.
    Wagner RL, White PF, et al (1984) Inhibition of adrenal steroidogenesis by the anesthetic etomidate. N Engl J Med 310(22):1415–1421PubMedCrossRefGoogle Scholar
  70. 70.
    Wiedemayer H, Sandalcioglu IE, et al (2004) False negative findings in intraoperative SEP monitoring: analysis of 658 consecutive neurosurgical cases and review of published reports. J Neurol Neurosurg Psychiatry 75(2):280–286PubMedGoogle Scholar
  71. 71.
    Wilson-Holden TJ, Padberg AM, et al (1999) Efficacy of intraoperative monitoring for pediatric patients with spinal cord pathology undergoing spinal deformity surgery. Spine 24(16):1685–1692PubMedCrossRefGoogle Scholar
  72. 72.
    Woodforth IJ, Hicks RG, et al (1996) Variability of motor-evoked potentials recorded during nitrous oxide anesthesia from the tibialis anterior muscle after transcranial electrical stimulation. Anesth Analg 82(4):744–749PubMedCrossRefGoogle Scholar
  73. 73.
    Yamada T (2004) Neuroanatomic substrates of lower extremity somatosensory evoked potentials. J Clin Neurophysiol 17:269–279CrossRefGoogle Scholar
  74. 74.
    Zentner J, Albrecht T, et al (1992) Influence of halothane, enflurane, and isoflurane on motor evoked potentials. Neurosurgery 31(2):298–305PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Thomas N. Pajewski
    • 1
  • Vincent Arlet
    • 2
    Email author
  • Lawrence H. Phillips
    • 3
  1. 1.Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleUSA
  2. 2.Division of Scoliosis and Spine Surgery, Department of Orthopedic SurgeryUniversity of Virginia Health SystemCharlottesvilleUSA
  3. 3.Department of NeurologyUniversity of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations