European Spine Journal

, Volume 16, Issue 8, pp 1145–1155 | Cite as

Treatment of unstable thoracolumbar junction burst fractures with short- or long-segment posterior fixation in magerl type a fractures

  • Murat AltayEmail author
  • Bülent Ozkurt
  • Cem Nuri Aktekin
  • Akif Muhtar Ozturk
  • Özgür Dogan
  • A. Yalçin Tabak
Original Article


The treatment of thoracolumbar fractures remains controversial. A review of the literature showed that short-segment posterior fixation (SSPF) alone led to a high incidence of implant failure and correction loss. The aim of this retrospective study was to compare the outcomes of the SS- and long-segment posterior fixation (LSPF) in unstable thoracolumbar junction burst fractures (T12–L2) in Magerl Type A fractures. The patients were divided into two groups according to the number of instrumented levels. Group I included 32 patients treated by SSPF (four screws: one level above and below the fracture), and Group II included 31 patients treated by LSPF (eight screws: two levels above and below the fracture). Clinical outcomes and radiological parameters (sagittal index, SI; and canal compromise, CC) were compared according to demographic features, localizations, load-sharing classification (LSC) and Magerl subgroups, statistically. The fractures with more than 10° correction loss at sagittal plane were analyzed in each group. The groups were similar with regard to age, gender, LSC, SI, and CC preoperatively. The mean follow-ups were similar for both groups, 36 and 33 months, respectively. In Group II, the correction values of SI, and CC were more significant than in Group I. More than 10° correction loss occurred in six of the 32 fractures in Group I and in two of the 31 patients in Group II. SSPF was found inadequate in patients with high load sharing scores. Although radiological outcomes (SI and CC remodeling) were better in Group II for all fracture types and localizations, the clinical outcomes (according to Denis functional scores) were similar except Magerl type A33 fractures. We recommend that, especially in patients, who need more mobility, with LSC point 7 or less with Magerl Type A31 and A32 fractures (LSC point 6 or less in Magerl Type A3.3) without neurological deficit, SSPF achieves adequate fixation, without implant failure and correction loss. In Magerl Type A33 fractures with LSC point 7 or more (LSC points 8–9 in Magerl Type A31 and A32) without severe neurologic deficit, LSPF is more beneficial.


Thoracolumbar fracture Classification Spinal instrumentation Short/long 


  1. 1.
    Akbarnia BA, Crandall DG, Burkus K et al (1994) Use of long rods and a short arthrodesis for burst fractures of the thoracolumbar spine. A long-term follow-up study. J Bone Joint Surg Am 76(11):1629–1635PubMedGoogle Scholar
  2. 2.
    Alanay A, Acarolu E, Yazici M et al (2001) Short-segment pedicle instrumentation of thoracolumbar burst fractures: does transpedicular intracorporeal grafting prevent early failure. Spine 26(2):213–217PubMedCrossRefGoogle Scholar
  3. 3.
    Alanay A, Acaroglu E, Yazici M et al (2001) The effect of transpedicular intracorporeal grafting in the treatment of thoracolumbar burst fractures on canal remodeling. Eur Spine J 10(6):512–516PubMedCrossRefGoogle Scholar
  4. 4.
    Aligizakis AC, Katonis PG, Sapkas G et al (2003) Gertzbein and load sharing classifications for unstable thoracolumbar fractures. Clin Orthop Relat Res 411:77–85PubMedCrossRefGoogle Scholar
  5. 5.
    Alvine GF, Swain JM, Asher MA et al (2004) Treatment of thoracolumbar burst fractures with variable screw placement or Isola instrumentation and arthrodesis: case series and literature review. J Spinal Disord Tech. 17(4):251–264PubMedCrossRefGoogle Scholar
  6. 6.
    Boerger TO, Dickson RA (2000) Does canal clearance affect neurological outcome after thoracolumbar burst fractures? J Bone Joint Surg Br 82(5):629–635PubMedCrossRefGoogle Scholar
  7. 7.
    Briem D, Lehmann W, Ruecker AH et al (2004) Factors influencing the quality of life after burst fractures of the thoracolumbar transition. Arch Orthop Trauma Surg 124(7):461–468PubMedCrossRefGoogle Scholar
  8. 8.
    Carl AL, Tromanhauser SG, Roger DJ (1992) Pedicle screw instrumentation for thoracolumbar burst fractures and fracture-dislocations. A calf spine model. Spine 17:317–324CrossRefGoogle Scholar
  9. 9.
    Chen HH, Wang WK, Li KC et al (2004) Biomechanical effects of the body augmenter for reconstruction of the vertebral body. Spine 29(18):382–387CrossRefGoogle Scholar
  10. 10.
    Chen JF, Lee ST (2004) Percutaneous vertebroplasty for treatment of thoracolumbar spine bursting fracture. Surg Neurol 62(6):494–500PubMedCrossRefGoogle Scholar
  11. 11.
    Cho DY, Lee WY, Sheu PC (2003) Treatment of thoracolumbar burst fractures with polymethyl methacrylate vertebroplasty and short-segment pedicle screw fixation. Neurosurgery 53(6):1354–1360PubMedCrossRefGoogle Scholar
  12. 12.
    Dall BE, Stauffer ES (1988) Neurologic injury and recovery patterns in burst fractures at the T12 or L1 motion segment. Clin Orthop 233:171–176PubMedGoogle Scholar
  13. 13.
    Daniaux H, Seykora P, Genelin A et al (1991) Application of posterior plating and modifications in thoracolumbar spine injuries: indication, techniques and results. Spine 16:125–133CrossRefGoogle Scholar
  14. 14.
    De Peretti F, Howorka I, Cambas PM et al (1996) Short device fixation and early mobilization for burst fractures of the thoracolumbar junction. Eur Spine J 5:112–120PubMedCrossRefGoogle Scholar
  15. 15.
    Denis F, Armstrong GWD, Searls K et al (1984) Acute thoracolumbar burst fractures in the absence of neurologic deficit: a comparison between operative and nonoperative treatment. Clin Orthop 189:142–149PubMedGoogle Scholar
  16. 16.
    Farcy JP, Weidenbaum M, Glassman SD (1990) Sagittal index in management of thoracolumbar burst fractures. Spine 15(9):958–965PubMedCrossRefGoogle Scholar
  17. 17.
    Frankel HL, Hancock DO, Hyslop G et al (1969) The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. Paraplegia 7:179–192PubMedGoogle Scholar
  18. 18.
    Gertzbein SD, Court-Brown CM, Marks P et al (1988) The neurologic outcome following surgery for spinal fractures. Spine 13:641–644PubMedCrossRefGoogle Scholar
  19. 19.
    Gurr KR, McAfee PC (1988) Cotrel-Dubousset instrumentation in adults. A preliminary report. Spine 13:510–520PubMedCrossRefGoogle Scholar
  20. 20.
    Hashimoto T, Kaneda K, Abumi K (1988) Relationship between traumatic spinal canal stenosis and neurological deficits in thoracolumbar burst fractures. Spine 13:1268–1272PubMedCrossRefGoogle Scholar
  21. 21.
    Kaneda K, Taneichi H, Abumi K et al (1997) Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg Am 79(1):69–83PubMedGoogle Scholar
  22. 22.
    Katonis PG, Kontakis GM, Loupasis GA et al (1999) Treatment of unstable thoracolumbar and lumbar spine injuries using Cotrel-Dubousset instrumentation. Spine 24(22):2352–2357PubMedCrossRefGoogle Scholar
  23. 23.
    Kim NH, Lee HM, Chun IM (1999) Neurologic injury and recovery in patients with burst fracture of the thoracolumbar spine. Spine 24:290–293PubMedCrossRefGoogle Scholar
  24. 24.
    Kirkpatrick JS, Wilber RG, Likavec M et al (1995) Anterior stabilization of thoracolumbar burst fractures using the Kaneda device: a preliminary report. Orthopedics 18:673–678PubMedGoogle Scholar
  25. 25.
    Knop C, Bastian L, Lange U et al (2002) Complications in surgical treatment of thoracolumbar injuries. Eur Spine J 11(3):214–226PubMedCrossRefGoogle Scholar
  26. 26.
    Knop C, Fabian HF, Bastian L et al (2002) Fate of the transpedicular intervertebral bone graft after posterior stabilisation of thoracolumbar fractures. Eur Spine J 11(3):251–257PubMedCrossRefGoogle Scholar
  27. 27.
    Knop C, Fabian HF, Bastian L et al (2001) Late results of thoracolumbar fractures after posterior instrumentation and transpedicular bone grafting. Spine 26(1):88–99PubMedCrossRefGoogle Scholar
  28. 28.
    Langrana NA, Harten RD, Lin DC et al (2002) Acute thoracolumbar burst fractures: a new view of loading mechanisms. Spine 27(5):498–508PubMedCrossRefGoogle Scholar
  29. 29.
    Leferink VJ, Zimmerman KW, Veldhuis EF et al (2001) Thoracolumbar spinal fractures: radiological results of transpedicular fixation combined with transpedicular cancellous bone graft and posterior fusion in 183 patients. Eur Spine J 10(6):517–523PubMedCrossRefGoogle Scholar
  30. 30.
    Li KC, Hsieh CH, Lee CY et al (2005) Transpedicle body augmenter: a further step in treating burst fractures. Clin Orthop Relat Res 436:119–125PubMedCrossRefGoogle Scholar
  31. 31.
    Magerl F, Aebi M, Gertzbein SD et al (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201PubMedCrossRefGoogle Scholar
  32. 32.
    McCormack T, Karaikovic E, Gaines RW (1994) The load sharing classification of spine fractures. Spine 19(15):1741–1744PubMedCrossRefGoogle Scholar
  33. 33.
    McLain RF, Sparling E, Benson DR (1993) Early failure of short-segment pedicle instrumentation of thoracolumbar fractures. A preliminary report. J Bone Joint Surg Am 75(2):162–167PubMedGoogle Scholar
  34. 34.
    Moon MS, Choi WT, Moon YW et al (2003) Stabilisation of fractured thoracic and lumbar spine with Cotrel-Dubousset instrument. J Orthop Surg 11(1):59–66Google Scholar
  35. 35.
    Müller U, Berlemann U, Sledge J et al (1999) Treatment of thoracolumbar burst fractures without neurologic deficit by indirect reduction and posterior instrumentation: bisegmental stabilization with monosegmental fusion. Eur Spine J 8(4):284–289PubMedCrossRefGoogle Scholar
  36. 36.
    Parker JW, Lane JR, Karaikovic EE et al (2000) Successful short-segment instrumentation and fusion for thoracolumbar spine fractures: a consecutive 4 1/2-year series. Spine 25(9):1157–1170PubMedCrossRefGoogle Scholar
  37. 37.
    Sanderson PL, Fraser RD, Hall DJ et al (1999) Short segment fixation of thoracolumbar burst fractures without fusion. Eur Spine J 8(6):495–500PubMedCrossRefGoogle Scholar
  38. 38.
    Sasso RC, Best NM, Reilly TM et al (2005) Anterior-only stabilization of three-column thoracolumbar injuries. J Spinal Disord Tech 18:7–14CrossRefGoogle Scholar
  39. 39.
    Vaccaro AR, Nachwalter RS, Klein GR et al (2001) The significance of thoracolumbar spinal canal size in spinal cord injury patients. Spine 26(4):371–376PubMedCrossRefGoogle Scholar
  40. 40.
    Verlaan JJ, van Helden WH, Oner FC et al (2002) Balloon vertebroplasty with calcium phosphate cement augmentation for direct restoration of traumatic thoracolumbar vertebral fractures. Spine 27(5):543–548PubMedCrossRefGoogle Scholar
  41. 41.
    Wessberg P, Wang Y, Irstam L et al (2001) The effect of surgery and remodelling on spinal canal measurements after thoracolumbar burst fractures. Eur Spine J 10(1):55–63PubMedCrossRefGoogle Scholar
  42. 42.
    Willen JAG, Gaekwad UH, Kakulas BA (1989) Burst fractures in the thoracic and lumbar spine: a clinico-neuropathologic analysis. Spine 14:1316–1323PubMedCrossRefGoogle Scholar
  43. 43.
    Wood KB, Bohn D, Mehbod A (2005) Anterior versus posterior treatment of stable thoracolumbar burst fractures without neurologic deficit: a prospective, randomized study. J Spinal Disord Tech 18:15–23CrossRefGoogle Scholar
  44. 44.
    Yazici M, Atilla B, Tepe S et al (1996) Spinal canal remodeling in burst fractures of the thoracolumbar spine: a computerized tomographic comparison between operative and nonoperative treatment. J Spinal Disorders 9(5):409–413Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Murat Altay
    • 1
    • 2
    Email author
  • Bülent Ozkurt
    • 1
  • Cem Nuri Aktekin
    • 1
  • Akif Muhtar Ozturk
    • 1
  • Özgür Dogan
    • 1
  • A. Yalçin Tabak
    • 1
  1. 1.Department of 5th Orthopaedics ClinicNumune Education and Research HospitalAnkaraTurkey
  2. 2.AnkaraTurkey

Personalised recommendations