European Spine Journal

, Volume 15, Supplement 3, pp 406–413 | Cite as

Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction

  • Victor Y. L. Leung
  • Danny Chan
  • Kenneth M. C. Cheung
Review

Abstract

Over the past few years, substantial progress has been made in the field of stem cell regeneration of the intervertebral disc. Autogenic mesenchymal stem cells in animal models can arrest intervertebral disc degeneration or even partially regenerate it and the effect is suggested to be dependent on the severity of degeneration. Mesenchymal stem cells (MSCs) are able to escape alloantigen recognition which is an advantage for allogenic transplantation. A number of injectable scaffolds have been described and various methods to pre-modulate MSCs’ activity have been tested. In future, work will need to address the use of mesenchymal stem cells in large animal models and the fate of the implanted mesenchymal stem cells, particularly in the long term, in animals. This review examines the state-of-the-art in the field of stem cell regeneration of the intervertebral disc, and critically discusses, with scientific support, the issues involved, before stem cells could be used in human subjects.

Keywords

Mesenchymal stem cells Intervertebral disc degeneration Intervertebral disc regeneration Tissue engineering 

Notes

Acknowledgments

The work described in this paper was partially supported by a grant from the University Grants Committee of the Hong Kong Special Administrative Region of China (HKU7496/05M).

References

  1. 1.
    Adams MA (2004) Biomechanics of back pain. Acupunct Med 22:178–188PubMedCrossRefGoogle Scholar
  2. 2.
    Ala-Kokko L (2002) Genetic risk factors for lumbar disc disease. Ann Med 34:42–47PubMedCrossRefGoogle Scholar
  3. 3.
    An HS, Takegami K, Kamada H et al (2005) Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits. Spine 30:25–31; discussion -2Google Scholar
  4. 4.
    Anderson DG, Risbud MV, Shapiro IM et al (2005) Cell-based therapy for disc repair. Spine J 5:297S–303SPubMedCrossRefGoogle Scholar
  5. 5.
    Annunen S, Paassilta P, Lohiniva J et al (1999) An allele of COL9A2 associated with intervertebral disc disease. Science 285:409–412PubMedCrossRefGoogle Scholar
  6. 6.
    Bertram H, Kroeber M, Wang H et al (2005) Matrix-assisted cell transfer for intervertebral disc cell therapy. Biochem Biophys Res Commun 331:1185–1192PubMedCrossRefGoogle Scholar
  7. 7.
    Bhardwaj R, Midha R (2004) Synchronous lumbar disc herniation in adult twins. Case report. Can J Neurol Sci 31:554–557PubMedGoogle Scholar
  8. 8.
    Bibby SR, Fairbank JC, Urban MR et al (2002) Cell viability in scoliotic discs in relation to disc deformity and nutrient levels. Spine 27:2220-8; discussion 7–8Google Scholar
  9. 9.
    Boos N, Weissbach S, Rohrbach H et al (2002) Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 27:2631–2644PubMedCrossRefGoogle Scholar
  10. 10.
    Budinger TF, Benaron DA, Koretsky AP (1999) Imaging transgenic animals. Annu Rev Biomed Eng 1:611–648PubMedCrossRefGoogle Scholar
  11. 11.
    Cheung KM, Chan D, Karppinen J et al (2006) Association of the Taq I allele in vitamin d receptor with degenerative disc disease and disc bulge in a chinese population. Spine 31:1143–1148PubMedCrossRefGoogle Scholar
  12. 12.
    Cheung KM, Ho G, Leung VY et al (2005) The effect of severity of disc degeneration on mesenchymal stem cells’ ability to regenerate the intervertebral disc: a rabbit model. Eur Cell Mater 10(Suppl 3):45Google Scholar
  13. 13.
    Crevensten G, Walsh AJ, Ananthakrishnan D et al (2004) Intervertebral disc cell therapy for regeneration: mesenchymal stem cell implantation in rat intervertebral discs. Ann Biomed Eng 32:430–434PubMedCrossRefGoogle Scholar
  14. 14.
    De Bari C, Dell’Accio F, Tylzanowski P et al (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942PubMedCrossRefGoogle Scholar
  15. 15.
    Djouad F, Bony C, Haupl T et al (2005) Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther 7:R1304–R1315PubMedCrossRefGoogle Scholar
  16. 16.
    Fraser JK, Wulur I, Alfonso Z et al (2006) Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24:150–154PubMedCrossRefGoogle Scholar
  17. 17.
    Freemont TJ, LeMaitre C, Watkins A et al (2001) Degeneration of intervertebral discs: current understanding of cellular and molecular events, and implications for novel therapies. Expert Rev Mol Med 2001:1–10PubMedCrossRefGoogle Scholar
  18. 18.
    Ganey T, Libera J, Moos V et al (2003) Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc. Spine 28:2609–2620PubMedCrossRefGoogle Scholar
  19. 19.
    Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369PubMedCrossRefGoogle Scholar
  20. 20.
    Gorensek M, Jaksimovic C, Kregar-Velikonja N et al (2004) Nucleus pulposus repair with cultured autologous elastic cartilage derived chondrocytes. Cell Mol Biol Lett 9:363–373PubMedGoogle Scholar
  21. 21.
    Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788PubMedCrossRefGoogle Scholar
  22. 22.
    Goupille P, Jayson MI, Valat JP et al (1998) Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine 23:1612–1626PubMedCrossRefGoogle Scholar
  23. 23.
    Gruber HE, Norton HJ, Ingram JA et al (2005) The SOX9 transcription factor in the human disc: decreased immunolocalization with age and disc degeneration. Spine 30:625–630PubMedCrossRefGoogle Scholar
  24. 24.
    Grunhagen T, Wilde G, Soukane DM et al (2006) Nutrient supply and intervertebral disc metabolism. J Bone Joint Surg Am 88(Suppl 2):30–35PubMedCrossRefGoogle Scholar
  25. 25.
    Han SM, Lee SY, Cho MH et al (2001) Disc hydration measured by magnetic resonance imaging in relation to its compressive stiffness in rat models. Proc Inst Mech Eng [H] 215:497–501Google Scholar
  26. 26.
    Hunter CJ, Matyas JR, Duncan NA (2003) The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng 9:667–677PubMedCrossRefGoogle Scholar
  27. 27.
    Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10:432–463PubMedCrossRefGoogle Scholar
  28. 28.
    Jim JJ, Noponen-Hietala N, Cheung KM et al (2005) The TRP2 allele of COL9A2 is an age-dependent risk factor for the development and severity of intervertebral disc degeneration. Spine 30:2735–2742PubMedCrossRefGoogle Scholar
  29. 29.
    Kashofer K, Bonnet D (2005) Gene therapy progress and prospects: stem cell plasticity. Gene Ther 12:1229–1234PubMedCrossRefGoogle Scholar
  30. 30.
    Kawakami M, Matsumoto T, Hashizume H et al (2005) Osteogenic protein-1 (osteogenic protein-1/bone morphogenetic protein-7) inhibits degeneration and pain-related behavior induced by chronically compressed nucleus pulposus in the rat. Spine 30:1933–1939PubMedCrossRefGoogle Scholar
  31. 31.
    Kim KW, Kim YS, Ha KY et al (2005) An autocrine or paracrine Fas-mediated counterattack: a potential mechanism for apoptosis of notochordal cells in intact rat nucleus pulposus. Spine 30:1247–1251PubMedCrossRefGoogle Scholar
  32. 32.
    Kim KW, Lim TH, Kim JG et al (2003) The origin of chondrocytes in the nucleus pulposus and histologic findings associated with the transition of a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact rabbit intervertebral discs. Spine 28:982–990PubMedCrossRefGoogle Scholar
  33. 33.
    Koestenbauer S, Zech NH, Juch H et al (2006) Embryonic stem cells: similarities and differences between human and murine embryonic stem cells. Am J Reprod Immunol 55:169–180PubMedCrossRefGoogle Scholar
  34. 34.
    Korbling M, Robinson S, Estrov Z et al (2005) Umbilical cord blood-derived cells for tissue repair. Cytotherapy 7:258–261PubMedCrossRefGoogle Scholar
  35. 35.
    Kuo CK, Li WJ, Mauck RL et al (2006) Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol 18:64–73PubMedCrossRefGoogle Scholar
  36. 36.
    Leo BM, Li X, Balian G et al (2004) In vivo bioluminescent imaging of virus-mediated gene transfer and transduced cell transplantation in the intervertebral disc. Spine 29:838–844PubMedCrossRefGoogle Scholar
  37. 37.
    Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85:1373–1416PubMedCrossRefGoogle Scholar
  38. 38.
    Levy YS, Stroomza M, Melamed E et al (2004) Embryonic and adult stem cells as a source for cell therapy in Parkinson’s disease. J Mol Neurosci 24:353–386PubMedCrossRefGoogle Scholar
  39. 39.
    Li X, Lee JP, Balian G et al (2005) Modulation of chondrocytic properties of fat-derived mesenchymal cells in co-cultures with nucleus pulposus. Connect Tissue Res 46:75–82PubMedCrossRefGoogle Scholar
  40. 40.
    Li X, Leo BM, Beck G et al (2004) Collagen and proteoglycan abnormalities in the GDF-5-deficient mice and molecular changes when treating disk cells with recombinant growth factor. Spine 29:2229–2234PubMedCrossRefGoogle Scholar
  41. 41.
    Liu H, Kemeny DM, Heng BC et al (2006) The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. J Immunol 176:2864–2871PubMedGoogle Scholar
  42. 42.
    MacGillivray TE (2003) Fibrin sealants and glues. J Card Surg 18:480–485PubMedCrossRefGoogle Scholar
  43. 43.
    Mangi AA, Noiseux N, Kong D et al (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9:1195–1201PubMedCrossRefGoogle Scholar
  44. 44.
    Miyahara Y, Nagaya N, Kataoka M et al (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12:459–465PubMedCrossRefGoogle Scholar
  45. 45.
    Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1885PubMedCrossRefGoogle Scholar
  46. 46.
    Murphy JM, Fink DJ, Hunziker EB et al (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474PubMedCrossRefGoogle Scholar
  47. 47.
    Mwale F, Iordanova M, Demers CN et al (2005) Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering. Tissue Eng 11:130–140PubMedCrossRefGoogle Scholar
  48. 48.
    Nishida K, Kang JD, Gilbertson LG et al (1999) Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine 24:2419–2425PubMedCrossRefGoogle Scholar
  49. 49.
    Noel D, Gazit D, Bouquet C et al (2004) Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells 22:74–85PubMedCrossRefGoogle Scholar
  50. 50.
    Nomura T, Mochida J, Okuma M et al (2001) Nucleus pulposus allograft retards intervertebral disc degeneration. Clin Orthop Relat Res:94–101Google Scholar
  51. 51.
    Noponen-Hietala N, Virtanen I, Karttunen R et al (2005) Genetic variations in IL6 associate with intervertebral disc disease characterized by sciatica. Pain 114:186–194PubMedCrossRefGoogle Scholar
  52. 52.
    Okuma M, Mochida J, Nishimura K et al (2000) Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration: an in vitro and in vivo experimental study. J Orthop Res 18:988–997PubMedCrossRefGoogle Scholar
  53. 53.
    Paul R, Haydon RC, Cheng H et al (2003) Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine 28:755–763PubMedCrossRefGoogle Scholar
  54. 54.
    Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  55. 55.
    Pountos I, Jones E, Tzioupis C et al (2006) Growing bone and cartilage: the role of mesenchymal stem cells. J Bone Joint Surg Br 88-B:421–426CrossRefGoogle Scholar
  56. 56.
    Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  57. 57.
    Richardson SM, Curran JM, Chen R et al (2006) The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-l-lactic acid (PLLA) scaffolds. BiomaterialsGoogle Scholar
  58. 58.
    Richardson SM, Walker RV, Parker S et al (2006) Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells 24:707–716PubMedCrossRefGoogle Scholar
  59. 59.
    Ringden O, Le Blanc K (2005) Allogeneic hematopoietic stem cell transplantation: state of the art and new perspectives. Apmis 113:813–830PubMedCrossRefGoogle Scholar
  60. 60.
    Risbud MV, Albert TJ, Guttapalli A et al (2004) Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: implications for cell-based transplantation therapy. Spine 29:2627–2632PubMedCrossRefGoogle Scholar
  61. 61.
    Roberts S, Menage J, Duance V et al (1991) 1991 Volvo Award in basic sciences. Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study. Spine 16:1030–1038PubMedCrossRefGoogle Scholar
  62. 62.
    Roh C, Lyle S (2006) Cutaneous stem cells and wound healing. Pediatr Res 59:100R–103RPubMedCrossRefGoogle Scholar
  63. 63.
    Ryan JM, Barry FP, Murphy JM et al (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2:8CrossRefGoogle Scholar
  64. 64.
    Sakai D, Mochida J, Iwashina T et al (2006) Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials 27:335–345PubMedCrossRefGoogle Scholar
  65. 65.
    Sakai D, Mochida J, Iwashina T et al (2005) Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine 30:2379–2387PubMedCrossRefGoogle Scholar
  66. 66.
    Sakai D, Mochida J, Yamamoto Y et al (2003) Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials 24:3531–3541PubMedCrossRefGoogle Scholar
  67. 67.
    Sato M, Asazuma T, Ishihara M et al (2003) An experimental study of the regeneration of the intervertebral disc with an allograft of cultured annulus fibrosus cells using a tissue-engineering method. Spine 28:548–553PubMedCrossRefGoogle Scholar
  68. 68.
    Seki S, Kawaguchi Y, Chiba K et al (2005) A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet 37:607–612PubMedCrossRefGoogle Scholar
  69. 69.
    Sell S (2001) The role of progenitor cells in repair of liver injury and in liver transplantation. Wound Repair Regen 9:467–482PubMedCrossRefGoogle Scholar
  70. 70.
    Semb H (2005) Human embryonic stem cells: origin, properties and applications. Apmis 113:743–750PubMedCrossRefGoogle Scholar
  71. 71.
    Semba K, Araki K, Li Z et al (2006) A novel murine gene, sickle tail, linked to the Danforth’s short tail locus, is required for normal development of the intervertebral disc. Genetics 172:445–456PubMedCrossRefGoogle Scholar
  72. 72.
    Sethe S, Scutt A, Stolzing A (2006) Aging of mesenchymal stem cells. Ageing Res Rev 5:91–116PubMedCrossRefGoogle Scholar
  73. 73.
    Shafritz DA, Oertel M, Menthena A et al (2006) Liver stem cells and prospects for liver reconstitution by transplanted cells. Hepatology 43:S89–S98PubMedCrossRefGoogle Scholar
  74. 74.
    Sive JI, Baird P, Jeziorsk M et al (2002) Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol Pathol 55:91–97PubMedCrossRefGoogle Scholar
  75. 75.
    Steck E, Bertram H, Abel R et al (2005) Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells 23:403–411PubMedCrossRefGoogle Scholar
  76. 76.
    Tajbakhsh S (2005) Skeletal muscle stem and progenitor cells: reconciling genetics and lineage. Exp Cell Res 306:364–372PubMedCrossRefGoogle Scholar
  77. 77.
    Takegami K, An HS, Kumano F et al (2005) Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis. Spine J 5:231–238PubMedCrossRefGoogle Scholar
  78. 78.
    Toma JG, Akhavan M, Fernandes KJ et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784PubMedCrossRefGoogle Scholar
  79. 79.
    Tuan RS (2004) Biology of developmental and regenerative skeletogenesis. Clin Orthop Relat Res:S105–S117Google Scholar
  80. 80.
    Videman T, Gibbons LE, Battie MC et al (2001) The relative roles of intragenic polymorphisms of the vitamin d receptor gene in lumbar spine degeneration and bone density. Spine 26:E7–E12PubMedCrossRefGoogle Scholar
  81. 81.
    Wagers AJ, Conboy IM (2005) Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 122:659–667PubMedCrossRefGoogle Scholar
  82. 82.
    Walker MH, Anderson DG (2004) Molecular basis of intervertebral disc degeneration. Spine J 4:158S–66SPubMedCrossRefGoogle Scholar
  83. 83.
    Wallach CJ, Sobajima S, Watanabe Y et al (2003) Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs. Spine 28:2331–2337PubMedCrossRefGoogle Scholar
  84. 84.
    Watanabe K, Mochida J, Nomura T et al (2003) Effect of reinsertion of activated nucleus pulposus on disc degeneration: an experimental study on various types of collagen in degenerative discs. Connect Tissue Res 44:104–108PubMedCrossRefGoogle Scholar
  85. 85.
    Watts C, McConkey H, Anderson L et al (2005) Anatomical perspectives on adult neural stem cells. J Anat 207:197–208PubMedCrossRefGoogle Scholar
  86. 86.
    Weiler C, Nerlich AG, Zipperer J et al (2002) 2002 SSE Award Competition in Basic Science: expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J 11:308–320PubMedCrossRefGoogle Scholar
  87. 87.
    Yamamoto Y, Mochida J, Sakai D et al (2004) Upregulation of the viability of nucleus pulposus cells by bone marrow-derived stromal cells: significance of direct cell-to-cell contact in coculture system. Spine 29:1508–1514PubMedCrossRefGoogle Scholar
  88. 88.
    Yang M, Ma QJ, Dang GT et al (2005) In vitro and in vivo induction of bone formation based on ex vivo gene therapy using rat adipose-derived adult stem cells expressing BMP-7. Cytotherapy 7:273–281PubMedCrossRefGoogle Scholar
  89. 89.
    Yoon ST, Park JS, Kim KS et al (2004) ISSLS prize winner: LMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo. Spine 29:2603–2611PubMedCrossRefGoogle Scholar
  90. 90.
    Zhang YG, Guo X, Xu P et al (2005) Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans. Clin Orthop Relat Res 430:219–226PubMedCrossRefGoogle Scholar
  91. 91.
    Zhu Y, McAlinden A, Sandell LJ (2001) Type IIA procollagen in development of the human intervertebral disc: regulated expression of the NH(2)-propeptide by enzymic processing reveals a unique developmental pathway. Dev Dyn 220:350–362PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Victor Y. L. Leung
    • 1
    • 2
  • Danny Chan
    • 2
  • Kenneth M. C. Cheung
    • 1
    • 3
  1. 1.Department of Orthopaedics and TraumatologyThe University of Hong KongHong Kong SARChina
  2. 2.Department of BiochemistryThe University of Hong KongHong Kong SARChina
  3. 3.Department of Orthopedics and TraumatologyThe University of Hong Kong Medical Centre, Queen Mary HospitalHong KongChina

Personalised recommendations