European Spine Journal

, Volume 15, Issue 9, pp 1301–1311 | Cite as

Electrical stimulation therapies for spinal fusions: current concepts

  • Jean C. GanEmail author
  • Paul A. Glazer


Electrical stimulation therapies have been used for more than 30 years to enhance spinal fusions. Although their positive effects on spinal fusions have been widely reported, the mechanisms of action of the technologies were only recently identified. Three types of technologies are available clinically: direct current, capacitive coupling, and inductive coupling. The latter is the basis of pulsed electromagnetic fields and combined magnetic fields. This review summarizes the current concepts on the mechanisms of action, animal and clinical studies, and cost justification for the use of electrical stimulation for spinal fusions. Scientific studies support the validity of electrical stimulation treatments. The mechanisms of action of each of the three electrical stimulation therapies are different. New data demonstrates that the upregulation of several growth factors may be responsible for the clinical success seen with the use of such technologies.


Electrical stimulation Electromagnetic field Direct current Capacitive coupling Growth factors 


  1. 1.
    Aaron RK, Wang S, Ciombor DM (2002) Upregulation of basal TGFβ1 levels by EMF coincident with chondrogenesis—implications for skeletal repair and tissue engineering. J Orthop Res 20:233–240CrossRefPubMedGoogle Scholar
  2. 2.
    Bassett CA, Becker RO (1962) Generation of electric potentials by bone in response to mechanical stress. Science 137:1063–1064PubMedCrossRefGoogle Scholar
  3. 3.
    Bassett CA, Pawluk RJ, Becker RO (1964) Effects of electric currents on bone formation in vivo. Nature 204:652–654PubMedCrossRefGoogle Scholar
  4. 4.
    Bodamyali T, Bhatt B, Hughes FJ, Winrow VR, Kanczler JM, Simon B, Abbott J, Blake DR, Stevens CR (1998) Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochem Biophys Res Commun 250:458–461CrossRefPubMedGoogle Scholar
  5. 5.
    Bodamyali T, Kanczler JM, Simon B, Blake DR, Stevens CR (1999) Effect of faradic products on direct current-stimulated calvarial organ culture calcium levels. Biochem Biophys Res Commun 264:657–661CrossRefPubMedGoogle Scholar
  6. 6.
    Boden SD, Schimandle JH, Hutton WC (1995) An experimental lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechanical healing characteristics. Spine 20:412–420PubMedCrossRefGoogle Scholar
  7. 7.
    Bose B (2001) Outcomes after posterolateral lumbar fusion with instrumentation in patients treated with adjunctive pulsed electromagnetic field stimulation. Adv Ther 18:12–20PubMedCrossRefGoogle Scholar
  8. 8.
    Boyan BD, Simon BJ, Gan JC, MacDougall MJ, Lohmann CH, Schwartz Z (2005) EMF regulates growth factor synthesis by osteoblasts. In: Aaron RK, Bolander ME (eds) Physical regulation of skeletal repair. American Academy of Orthopaedic Surgeons, Rosemont, pp 201–207Google Scholar
  9. 9.
    Bozic KJ, Glazer PA, Zurakowski D, Simon BJ, Lipson SJ, Hayes WC (1999) In vivo evaluation of coralline hydroxyapatite and direct current electrical stimulation in lumbar spinal fusion. Spine 20:2127–2133CrossRefGoogle Scholar
  10. 10.
    Brighton CT, Luessenhop CP, Pollack SR, Steinberg DR, Petrik ME, Kaplan FS (1989) Treatment of castration-induced osteoporosis by a capacitive coupled electrical signal in the rat vertebrae. J Bone Joint Surg Am 71:228–233PubMedGoogle Scholar
  11. 11.
    Brighton CT, Wang W, Seldes R, Zhang G, Pollack SR (2001) Signal transduction in electrically stimulated bone cells. J Bone Joint Surg Am 83:1514–1523PubMedGoogle Scholar
  12. 12.
    Bushinsky DA (1996) Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am J Physiol 271:F216–F222PubMedGoogle Scholar
  13. 13.
    Carter EL, Vresilovic EJ, Pollack SR, Brighton CT (1989) Field distributions in vertebral bodies of the rat during electrical stimulation: a parametric study. IEEE Trans Biomed Eng 36:333–345CrossRefPubMedGoogle Scholar
  14. 14.
    Carter EL, Pollack SR, Brighton CT (1990) Theoretical determination of the current density distributions in human vertebral bodies during electrical stimulation. IEEE Trans Biomed Eng 37:606–614CrossRefPubMedGoogle Scholar
  15. 15.
    Cho M, Hunt TK, Hussain MZ (2001) Hydrogen peroxide stimulates macrophage vascular endothelial growth factor release. Am J Physiol Heart Circ Physiol 280:H2357–H2363PubMedGoogle Scholar
  16. 16.
    Dawson EG (2003) Bone morphogenetic proteins BMPs. Letter. Spine J 3:87–88CrossRefPubMedGoogle Scholar
  17. 17.
    Dejardin LM, Kahanovitz N, Arnoczky SP, Simon BJ (2001) The effect of varied electrical current densities on lumbar spinal fusion in dogs. Spine J 1:341–347CrossRefPubMedGoogle Scholar
  18. 18.
    Di Silvestre M, Savini R (1992) Pulsing electromagnetic fields (PEMFs) in spinal fusion: preliminary clinical results. Chir Organi Mov 77:289–294PubMedGoogle Scholar
  19. 19.
    Dwyer AF, Yau AC, Jefcoat KW (1974) Use of direct current in spine fusion. J Bone Joint Surg Am 56:442Google Scholar
  20. 20.
    Fitzsimmons RJ, Ryaby JT, Magee FP, Baylink DJ (1995) IGF-II receptor number is increased in TE-85 osteosarcoma cells by combined magnetic fields. J Bone Miner Res 10:812–819PubMedCrossRefGoogle Scholar
  21. 21.
    Fitzsimmons RJ, Ryaby JT, Mohan S, Magee FP, Baylink DJ (1995) Combined magnetic fields increase insulin-like growth factor-II in TE-85 human osteosarcoma bone cell cultures. Endocrinology 136:3100–3106CrossRefPubMedGoogle Scholar
  22. 22.
    France JC, Norman TL, Santrock RD, McGrath B, Simon BJ (2001) The efficacy of direct current stimulation for lumbar intertransverse process fusions in an animal model. Spine 26:1002–1008CrossRefPubMedGoogle Scholar
  23. 23.
    Fredericks D, Petersen E, Bobst J, Gan J, Simon B, Nepola J (2004) Effects of capacitive coupling electrical stimulation on expression of growth factors in a rabbit posterolateral spine fusion model. North American Spine Society, ChicagoGoogle Scholar
  24. 24.
    Fredericks DC, Petersen EB, Bobst JA, Gan JC, Simon BJ, Glazer P, Nepola JV (2006) Effects of direct current electrical stimulation on gene expression of osteopromotive factors in a posterolateral spinal fusion model. Spine (in press)Google Scholar
  25. 25.
    Gan JC, Fredericks DC, Glazer PA (2004) Direct current and capacitive coupling electrical stimulation upregulates osteopromotive factors for spinal fusions. Orthop J Harvard Med School 6:57–59Google Scholar
  26. 26.
    Geesink RG, Hoefnagels NH, Bulstra SK (1999) Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J Bone Joint Surg Br 81:710–718CrossRefPubMedGoogle Scholar
  27. 27.
    Glazer PA, Heilmann MR, Lotz JC, Bradford DS (1997) Use of electromagnetic fields in spinal fusion. A rabbit model. Spine 22:2351–2356CrossRefPubMedGoogle Scholar
  28. 28.
    Goodwin CB, Brighton CT, Guyer RD, Johnson JR, Light KI, Yuan HA (1999) A double-blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine 24:1349–1357CrossRefPubMedGoogle Scholar
  29. 29.
    Guerkov HH, Lohmann CH, Liu Y, Dean DD, Simon BJ, Heckman JD, Schwartz Z, Boyan BD (2001) Pulsed electromagnetic fields increase growth factor release by nonunion cells. Clin Orthop 384:265–279PubMedCrossRefGoogle Scholar
  30. 30.
    Guizzardi S, Di Silvestre M, Govoni P, Scandroglio R (1994) Pulsed electromagnetic field stimulation on posterior spinal fusions: a histological study in rats. J Spinal Disord 7:36–40PubMedCrossRefGoogle Scholar
  31. 31.
    Ito M, Fay LA, Ito Y, Yuan MR, Edwards WT, Yuan HA (1997) The effect of pulsed electromagnetic fields on instrumented posterolateral spinal fusion and clinical related stress shielding. Spine 20:382–388CrossRefGoogle Scholar
  32. 32.
    Kahanovitz N, Arnoczky SP (1990) The efficacy of direct current electrical stimulation to enhance canine spinal fusions. Clin Orthop 251:295–299PubMedGoogle Scholar
  33. 33.
    Kahanovitz N, Pashos C (1996) The role of implantable direct current electrical stimulation in the critical pathway for lumbar spinal fusion. J Care Manage 6:2–8Google Scholar
  34. 34.
    Kahanovitz N, Arnoczky SP, Hulse D, Shires PK (1984) The effect of post-operative electromagnetic pulsing on canine posterior spinal fusions. Spine 9:273–279PubMedCrossRefGoogle Scholar
  35. 35.
    Kahanovitz N, Arnoczky SP, Nemzek J, Shores A (1994) The effect of electromagnetic pulsing on posterior lumbar spinal fusions in dogs. Spine 19:705–709PubMedCrossRefGoogle Scholar
  36. 36.
    Kane WJ (1988) Direct current electrical bone growth stimulation for spinal fusion. Spine 24:363–365CrossRefGoogle Scholar
  37. 37.
    Kawase T, Orikasa M, Suzuki A (1991) Effects of prostaglandin E2 and F on cytoplasmic pH in a clonal osteoblast-like cell line, MOB 3–4. J Cell Physiol 146:141–147CrossRefPubMedGoogle Scholar
  38. 38.
    Kucharzyk D (1999) A controlled prospective outcome study of implantable electrical stimulation with spinal instrumentation in a high-risk spinal fusion population. Spine 5:465–469CrossRefGoogle Scholar
  39. 39.
    Lane JM (2001) BMPs: why are they not in everyday use? J Bone Joint Surg Am 83(Suppl 1 Pt 2):S161–S163PubMedGoogle Scholar
  40. 40.
    Laursen M, Hoy K, Hansen ES, Gelineck J, Christensen FB, Bunger CE (1999) Recombinant bone morphogenetic protein-7 as an intracorporal bone growth stimulator in unstable thoracolumbar burst fractures in humans: preliminary results. Eur Spine J 8:485–490CrossRefPubMedGoogle Scholar
  41. 41.
    Lee K (1989) Clinical investigation of the spinal stem system, open trail phase: pseudarthrosis stratum. American Academy of Orthopaedic Surgeons, Las VegasGoogle Scholar
  42. 42.
    Linovitz RJ, Pathria M, Bernhardt M, Green D, Law MD, McGuire RA, Montesana PX, Rechtine G, Salib RM, Ryaby JT, Faden JS, Ponder R, Muenz LR, Magee FP, Garfin SA (2002) Combined magnetic fields accelerate and increase spine fusion: a double-blind, randomized, placebo controlled study (discussion 1389). Spine 27:1383–1389CrossRefPubMedGoogle Scholar
  43. 43.
    Lohmann CH, Schwartz Z, Liu Y, Guerkov H, Dean DD, Simon B, Boyan BD (2000) Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J Orthop Res 18:637–646CrossRefPubMedGoogle Scholar
  44. 44.
    Lohmann CH, Schwartz Z, Liu Y, Li Z, Simon BJ, Sylvia VL, Dean DD, Bonewald LF, Donahue HJ, Boyan BD (2003) Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells. J Orthop Res 21:326–334CrossRefPubMedGoogle Scholar
  45. 45.
    Lorich DG, Brighton CT, Gupta R, Corsetti JR, Levine SE, Gelb ID, Seldes R, Pollack SR (1998) Biochemical pathway mediating the response of bone cells to capacitive coupling. Clin Orthop 350:246–256PubMedGoogle Scholar
  46. 46.
    Marks RA (2000) Spine fusion for discogenic low back pain: outcomes in patients treated with or without pulsed electromagnetic field stimulation. Adv Ther 17:57–67PubMedCrossRefGoogle Scholar
  47. 47.
    McKay B, Sandhu HS (2002) Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. Spine 27(16 Suppl 1):S66–S85CrossRefPubMedGoogle Scholar
  48. 48.
    Meril AJ (1994) Direct current stimulation of allograft in anterior and posterior lumbar interbody fusions. Spine 19:2393–2397PubMedCrossRefGoogle Scholar
  49. 49.
    Mooney V (1990) A randomized double-blind prospective study of the efficacy of pulsed electromagnetic fields for interbody lumbar fusions. Spine 15:708–712PubMedCrossRefGoogle Scholar
  50. 50.
    Morone MA, Boden SD, Hair G, Martin GJ, Racine M, Hutton WC (1998) Gene expression during allograft lumbar spine fusion and the effect of bone morphogenetic protein 2. Clin Orthop 351:252–265PubMedGoogle Scholar
  51. 51.
    Nagai M, Ota M (1994) Pulsating electromagnetic field stimulates mRNA expression of bone morphogenetic protein-2 and -4. J Dent Res 73:1601–1605PubMedGoogle Scholar
  52. 52.
    Nepola JV, Fredericks D, Simon B, Abbott J (1996) Effect of exposure time on stimulation of healing in the rabbit tibial osteotomy model by a time varying pulsed electromagnetic field and by combined magnetic fields. Canadian Orthopaedic Research Society, Quebec CityGoogle Scholar
  53. 53.
    Nerubay J, Margarit B, Bubis JJ, Tadmor A, Katznelson A (1986) Stimulation of bone formation by electrical current on spinal fusion. Spine 11:167–169PubMedCrossRefGoogle Scholar
  54. 54.
    Poynton AR, Lane JM (2002) Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine 27(16 Suppl 1):S40–S48CrossRefPubMedGoogle Scholar
  55. 55.
    Reid IR, Civitelli R, Avioli LV, Hruska KA (1988) Parathyroid hormone depresses cytosolic pH and DNA synthesis in osteoblast-like cells. Am J Physiol Endocrinol Metab 255:E9–E15Google Scholar
  56. 56.
    Rogozinski A, Rogozinski C (1996) Efficacy of implanted bone growth stimulation in instrumented lumbosacral spinal fusion. Spine 21:2479–2483CrossRefPubMedGoogle Scholar
  57. 57.
    Rubinacci A, De Ponti A, Shipley A, Samaja M, Karplus E, Jaffe LF (1996) Bicarbonate dependence of ion current in damaged bone. Calcif Tissue Int 58:423–428CrossRefPubMedGoogle Scholar
  58. 58.
    Ryaby J, Fitzsimmons RJ, Khin NA, Culley PL, Magee FP, Weinstein AM, Baylink DJ (1994) The role of insulin-like growth factor II in magnetic field regulation of bone formation. Bioelectrochem Bioenerg 35:87–91CrossRefGoogle Scholar
  59. 59.
    Simmons JW (1985) Treatment of failed posterior lumbar interbody fusion (PLIF) of the spine with pulsing electromagnetic fields. Clin Orthop 183:127–132Google Scholar
  60. 60.
    Simmons JW, Hayes MA, Christensen DK, Dwyer AP, Koullsis CS, Kimmich SJ (1989) The effect of postoperative pulsing electromagnetic fields on lumbar fusion: an open trial phase study. North American Spine Society, QuebecGoogle Scholar
  61. 61.
    Smith TL, Wong-Gibbons D, Maultsby J (2004) Microcirculatory effects of pulsed electromagnetic fields. J Orthop Res 22:80–84CrossRefPubMedGoogle Scholar
  62. 62.
    Sugimoto T, Kano J, Fukase M, Fujita T (1992) Second messenger signaling in the regulation of cytosolic pH and DNA synthesis by parathyroid hormone (PTH) and PTH-related peptide in osteoblastic osteosarcoma cells: role of Na+/H+ exchange. J Cell Physiol 152:28–34CrossRefPubMedGoogle Scholar
  63. 63.
    Tejano NA, Puno R, Ignacio JMF (1996) The use of implantable direct current stimulation in multilevel spinal fusion without instrumentation. Spine 16:1904–1908CrossRefGoogle Scholar
  64. 64.
    Tepper OM, Callaghan MJ, Chang EI, Galiano RD, Bhatt KA, Baharestani S, Gan J, Simon B, Hopper RA, Levine JP, Gurtner GC (2004) Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2 (Epub Jun 18). FASEB J 18:1231–1233PubMedGoogle Scholar
  65. 65.
    Toth JM, Seim HB, Schwardt JD, Humphrey WB, Wallskog JA, Turner AS (2000) Direct current electrical stimulation increases the fusion rate of spinal fusion cages. Spine 25:2580–2587CrossRefPubMedGoogle Scholar
  66. 66.
    Uludag H, D’Augusta D, Palmer R, Timony G, Wozney J (1999) Characterization of rhBMP-2 pharmacokinetics implanted with biomaterial carriers in the rat ectopic model. J Biomed Mater Res 46:193–202CrossRefPubMedGoogle Scholar
  67. 67.
    Weinstein AM, McLeod BR, Smith SD, Liboff AR (1990) Ion resonance tuned electromagnetic fields increase healing rate in ostectomized rabbits. Orthopaedic Research Society, New OrleansGoogle Scholar
  68. 68.
    Yasuda I (1953) Fundamental problems in the treatment of fracture. J Kyoto Med Soc 4:395–406Google Scholar
  69. 69.
    Zhuang H, Wang W, Seldes RM, Tahernia AD, Fan H, Brighton CT (1997) Electrical stimulation induces the level of TGF-β1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochem Biophys Res Commun 237:225–229CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.EBI LP, Department of Research and DevelopmentParsippanyUSA
  2. 2.Beth Israel Deaconess Medical Center, Orthopedic SurgeryBostonUSA

Personalised recommendations