European Spine Journal

, Volume 14, Issue 10, pp 971–976 | Cite as

Accuracy of DXA scanning of the thoracic spine: cadaveric studies comparing BMC, areal BMD and geometric estimates of volumetric BMD against ash weight and CT measures of bone volume

  • Meena M. Sran
  • Karim M. Khan
  • Kathy Keiver
  • Jason B. Chew
  • Heather A. McKay
  • Thomas R. Oxland
Original Article


Biomechanical studies of the thoracic spine often scan cadaveric segments by dual energy X-ray absorptiometry (DXA) to obtain measures of bone mass. Only one study has reported the accuracy of lateral scans of thoracic vertebral bodies. The accuracy of DXA scans of thoracic spine segments and of anterior-posterior (AP) thoracic scans has not been investigated. We have examined the accuracy of AP and lateral thoracic DXA scans by comparison with ash weight, the gold-standard for measuring bone mineral content (BMC). We have also compared three methods of estimating volumetric bone mineral density (vBMD) with a novel standard–ash weight (g)/bone volume (cm3) as measured by computed tomography (CT). Twelve T5–T8 spine segments were scanned with DXA (AP and lateral) and CT. The T6 vertebrae were excised, the posterior elements removed and then the vertebral bodies were ashed in a muffle furnace. We proposed a new method of estimating vBMD and compared it with two previously published methods. BMC values from lateral DXA scans displayed the strongest correlation with ash weight (r=0.99) and were on average 12.8% higher (p<0.001). As expected, BMC (AP or lateral) was more strongly correlated with ash weight than areal bone mineral density (aBMD; AP: r=0.54, or lateral: r=0.71) or estimated vBMD. Estimates of vBMD with either of the three methods were strongly and similarly correlated with volumetric BMD calculated by dividing ash weight by CT-derived volume. These data suggest that readily available DXA scanning is an appropriate surrogate measure for thoracic spine bone mineral and that the lateral scan might be the scan method of choice.


DXA Accuracy Thoracic spine Ash weight Bone volume 


  1. 1.
    Adachi JD, Loannidis G, Berger C, et al (2001) The influence of osteoporotic fractures on health-related quality of life in community-dwelling men and women across Canada. Osteoporos Int 12:903–908CrossRefPubMedGoogle Scholar
  2. 2.
    Belkoff SM, Mathis JM, Fenton DC, et al (2001) An ex vivo biomechanical evaluation of an inflatable bone tamp used in the treatment of compression fracture. Spine 26:151–156CrossRefPubMedGoogle Scholar
  3. 3.
    Belkoff SM, Mathis JM, Jasper LE, et al (2001) The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior. Spine 26:1537–1541PubMedGoogle Scholar
  4. 4.
    Belkoff SM, Mathis JM, Jasper LE, et al (2001) An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Spine 26:1542–1546PubMedGoogle Scholar
  5. 5.
    Bland DG, Altman JM (1983) Measurement in medicine: analysis of method comparison studies. Statistician 32:307–317Google Scholar
  6. 6.
    Bostrom MP, Lane JM (1997) Future directions. Augmentation of osteoporotic vertebral bodies. Spine 15:38S–42SGoogle Scholar
  7. 7.
    Breeze SW, Doherty BJ, Noble PS, et al (1998) A biomechanical study of anterior thoracolumbar screw fixation. Spine 23:1829–1831PubMedGoogle Scholar
  8. 8.
    Butler TEJ, Asher MA, Jayaraman G, et al (1994) The strength and stiffness of thoracic implant anchors in osteoporotic spines. Spine 19:1956–1962PubMedGoogle Scholar
  9. 9.
    Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145PubMedGoogle Scholar
  10. 10.
    Chapman JR, Harrington RM, Lee KM, et al (1996) Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng 118:391–398PubMedGoogle Scholar
  11. 11.
    Cheng XG, Lowet G, Boonen S, et al (1998) Prediction of vertebral and femoral strength in vitro by bone mineral density measured at different skeletal sites. J Bone Miner Res 13:1439–1443Google Scholar
  12. 12.
    Coe JD, Warden KE, Herzig MA, et al (1990) Influence of bone mineral density on the fixation of thoracolumbar implants. A comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine 15:902–907PubMedGoogle Scholar
  13. 13.
    Cummings SR, Black DM, Nevitt MC, et al (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341:72–75CrossRefPubMedGoogle Scholar
  14. 14.
    Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767CrossRefPubMedGoogle Scholar
  15. 15.
    Edmondston SJ, Singer KP, Day RE, et al (1997) Ex vivo estimation of thoracolumbar vertebral body compressive strength: the relative contributions of bone densitometry and vertebral morphometry. Osteoporos Int 7:142–148PubMedGoogle Scholar
  16. 16.
    Edmondston SJ, Singer KP, Price RI, et al (1993) Accuracy of lateral dual energy X-ray absorptiometry for the determination of bone mineral content in the thoracic and lumbar spine: an in vitro study. Br J Radiol 66:309–313PubMedGoogle Scholar
  17. 17.
    Faulkner RA, McCulloch RG, Fyke SL, et al (1995) Comparison of areal and estimated volumetric bone mineral density values between older men and women. Osteoporos Int 5:271–275PubMedGoogle Scholar
  18. 18.
    Ferguson SJ, Winkler F, Nolte LP (2002) Anterior fixation in the osteoporotic spine: cut-out and pullout characteristics of implants. Eur Spine J 11:527–534PubMedGoogle Scholar
  19. 19.
    Glantz SA (2001) Primer of biostatistics, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  20. 20.
    Grant JP, Oxland TR, Dvorak MF (2001) Mapping the structural properties of the lumbosacral vertebral endplates. Spine 26:889–896PubMedGoogle Scholar
  21. 21.
    Halvorson TL, Kelley LA, Thomas KA, et al (1994) Effects of bone mineral density on pedicle screw fixation. Spine 19:2415–2420PubMedGoogle Scholar
  22. 22.
    Ho CP, Kim RW, Schaffler MB, et al (1990) Accuracy of dual-energy radiographic absorptiometry of the lumbar spine: cadaver study. Radiology 176:171–173PubMedGoogle Scholar
  23. 23.
    Hollowell JP, Vollmer DG, Wilson CR, et al (1996) Biomechanical analysis of thoracolumbar interbody constructs. How important is the endplate? Spine 21:1032–1036CrossRefPubMedGoogle Scholar
  24. 24.
    Hologic (1996) Model QDR-4500 User’s guide. Hologic, WalthamGoogle Scholar
  25. 25.
    Hu SS (1997) Internal fixation in the osteoporotic spine. Spine 15:43S–48SGoogle Scholar
  26. 26.
    Katzman DK, Bachrach LK, Carter DR, et al (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339PubMedGoogle Scholar
  27. 27.
    Kaymakci B, Wark JD (1994) Precise accurate mineral measurements of excised sheep bones using X-ray densitometry. Bone Miner 25:231–246PubMedGoogle Scholar
  28. 28.
    Kroger H, Kotaniemi A, Kroger L, et al (1993) Development of bone mass and bone density of the spine and femoral neck—a prospective study of 65 children and adolescents. Bone Miner 23:171–182PubMedGoogle Scholar
  29. 29.
    Kroger H, Vainio P, Nieminen J, et al (1995) Comparison of different models for interpreting bone mineral density measurements using DXA and MRI technology. Bone 17:157–159CrossRefPubMedGoogle Scholar
  30. 30.
    Matthis C, Weber U, O’Neill TW, et al (1998) Health impact associated with vertebral deformities: results from the European vertebral osteoporosis study (EVOS). Osteoporos Int 8:364–372PubMedGoogle Scholar
  31. 31.
    McKoy BE, An YH (2001) An expandable anchor for fixation in osteoporotic bone. J Orthop Res 19:545–547PubMedGoogle Scholar
  32. 32.
    Moro M, Hecker AT, Bouxsein ML, et al (1995) Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA. Calcif Tissue Int 56:206–209PubMedGoogle Scholar
  33. 33.
    Panjabi MM, Goel V, Oxland T, et al (1992) Human lumbar vertebrae. Quantitative three-dimensional anatomy. Spine 17:299–306PubMedGoogle Scholar
  34. 34.
    Panjabi MM, Takata K, Goel V, et al (1991) Thoracic human vertebrae. Quantitative three-dimensional anatomy. Spine 16:888–901PubMedGoogle Scholar
  35. 35.
    Sabin MA, Blake GM, MacLaughlin-Black SM, et al (1995) The accuracy of volumetric bone density measurements in dual X-ray absorptiometry. Calcif Tissue Int 56:210–214PubMedGoogle Scholar
  36. 36.
    Shepherd DE, Leahy JC, Mathias KJ, et al (2000) Spinous process strength. Spine 25:319–323PubMedGoogle Scholar
  37. 37.
    Sran MM, Khan KM, Cooper DML, et al (2004) Regional trabecular bone volume ratio predicts failure of thoracic vertebrae under a posteroanterior load. In: 26th Annual meeting of the American Society for Bone and Mineral Research, SeattleGoogle Scholar
  38. 38.
    Sran MM, Khan KM, Zhu Q, et al (2004) Failure characteristics of the thoracic spine with a posteroanterior load: investigating the safety of spinal mobilization. Spine 29:2382–2388PubMedGoogle Scholar
  39. 39.
    Svendsen OL, Hassager C, Skodt V, et al (1995) Impact of soft tissue on in vivo accuracy of bone mineral measurements in the spine, hip, and forearm: a human cadaver study. J Bone Miner Res 10:868–873PubMedGoogle Scholar
  40. 40.
    Van der Klift M, Laet CEDH de, McCloskey EV, et al (2002) The incidence of vertebral fractures in men and women: the Rotterdam study. J Bone Miner Res 17:1051–1056PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Meena M. Sran
    • 1
    • 2
    • 3
  • Karim M. Khan
    • 2
    • 4
  • Kathy Keiver
    • 5
  • Jason B. Chew
    • 6
  • Heather A. McKay
    • 2
    • 7
  • Thomas R. Oxland
    • 1
    • 7
    • 8
  1. 1.Division of Orthopaedic Engineering Research, Department of Orthopaedics, Faculty of MedicineUniversity of British Columbia and the Vancouver Coastal Health Research InstituteVancouverCanada
  2. 2.Bone Health Research GroupUniversity of British Columbia and the Vancouver Coastal Health Research InstituteVancouverCanada
  3. 3.Department of MedicineUniversity of British ColumbiaVancouverCanada
  4. 4.Department of Family PracticeUniversity of British ColumbiaVancouverCanada
  5. 5.Food, Nutrition and HealthUniversity of British ColumbiaVancouverCanada
  6. 6.Department of RadiologyUniversity of British Columbia and the Vancouver Hospital and Health Sciences CentreVancouverCanada
  7. 7.Department of OrthopaedicsUniversity of British Columbia and the Vancouver Coastal Health Research InstituteVancouverCanada
  8. 8.Department of Mechanical EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations