European Spine Journal

, Volume 14, Issue 3, pp 227–233 | Cite as

Absorbable self-reinforced polylactide (SR-PLLA) rods vs rigid rods (K-wire) in spinal fusion: an experimental study in rabbits

  • Murat BezerEmail author
  • Yakup Yildirim
  • Bülent Erol
  • Osman Güven
Original Article


Several clinical and experimental reports have evaluated the spinal application of bioabsorbable material for plating the anterior lumbar and cervical spine, and in anterior and posterior lumbar interbody spinal fusion. Nevertheless, the use of these materials in posterolateral interlaminar fusion has yet to be elucidated in the literature. The effects of bioabsorbable self-reinforced polylactide rod (SR-PLLA) implantation, rigid fixation (K-wire) and non-implantation with posterior interlaminar fusion were compared using a rabbit model. Twenty-four mature domestic rabbits were divided into three groups. Eight received implantation with SR-PLLA, eight with K-wire, and eight were fused without instrumentation. The animals were killed at 12 weeks and evaluated by posteroanterior radiography, manual palpation and histological examination for the presence of fusion. Successful fusion was achieved in all of the animals in both implanted groups (SR-PLLA and K-wire), whereas solid fusion was not detected in any of the specimens in the non-implanted group. Computed tomography (CT) scans were used to detect fusion mass volume. The fusion mass in the SR-PLLA implanted group had a mean volume of 1,196 mm3±167 mm3 vs 1,061 mm3±181 mm3 for the K-wire implanted group (not significant) and 711 mm3±407 mm3 (p<0.05) for the non-implanted group. The results of this study suggest that the stabilization properties of both SR-PLLA rods and K-wire seem to be sufficient for spinal fusion, but using SR-PLLA is especially advantageous, since they do not require a removal operation and do not interfere with magnetic resonance imaging (MRI).


Polylactide (PLLA) rod Spine fusion Experimental 


  1. 1.
    Alexander JT, Branch CL, Subach BR, Haid R (2002) Applications of a resorbable interbody spacer via a posterior lumbar interbody fusion technique. Orthopedics Oct 25 [Suppl 10]:1,185–1,189Google Scholar
  2. 2.
    Ames CP, Cornwall B, Crawford NR, Nottmeier E, Chamberlain RH, Sonntag VKH (2002) Feasibility of a resorbable anterior cervical graft containment plate. Orthopedics Oct 25 [Suppl 10]:1,149–1,155Google Scholar
  3. 3.
    Boden SD, Schimandle JH, Hutton WC, Chen MI (1995) The use of an osteoinductive growth factor for lumbar spinal fusion. Spine 20:2,626–2,632Google Scholar
  4. 4.
    Boden SD, Martin GJ, Morone M, Ugbo JL, Titus L, Hutton WC (1999) The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spine fusion. Spine 24(4):320–327CrossRefPubMedGoogle Scholar
  5. 5.
    Böstman O, Pihlajamaki H (2000) Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials 21:2,615–2,621Google Scholar
  6. 6.
    Böstman O, Paivarinta U, Partio E, Vasenius J, Manninen M, Prokkanen P (1992) Degradation and tissue replacement of an absorbable polyglycolide screw in the fixation of rabbit femoral osteotomies. 74:1,021–1,031Google Scholar
  7. 7.
    Böstman OM (1991) Current concepts review. Absorbable implants for the fixation of fractures. J Bone Joint Surg Am 73:148–153PubMedGoogle Scholar
  8. 8.
    Böstman OM (1991) Osteolytic changes accompanying degradation of absorbable fracture fixation implants. J.Bone Joint Surg Br 73:679–682PubMedGoogle Scholar
  9. 9.
    Böstman OM, Makela EA, Törmala P, Rokkanen P (1989): Transphyseal fracture fixation using biodegradable pins. J Bone Joint Surg Br 71:706–707PubMedGoogle Scholar
  10. 10.
    Bucholz RW, Henry S, Henley MB (1994) Fixation with bioabsorbable screws for the treatment of fractures of the ankle. J Bone Joint Surg Am 76:319–324PubMedGoogle Scholar
  11. 11.
    Cornwall GB, Thomas KA, Turner AS, Wheeler DL, Taylor WR (2002) Use of a resorbable sheet in iliac crest reconstruction in a sheep model. Orthopedics Oct 25 [Suppl 10]:1,167–1,171Google Scholar
  12. 12.
    Curylo LJ, Johnstone B, Petersilge CA, Janicki JA, Yoo JU (1999) Augmentation of spinal arthrodesis with autologous bone marrow in a rabbit posterolateral pine fusion model. Spine 24(5):434–439CrossRefPubMedGoogle Scholar
  13. 13.
    Deguchi M, Cheng BC, Sato K, Matsuyama Y, Zdeblick TA (1998) Biomechanical evaluation of translaminar facet joint fixation. Spine 23:1,307–1,313CrossRefPubMedGoogle Scholar
  14. 14.
    Diangelo DJ, Scifert JL, Kitchel S, Cornwall B, Mcvay BJ (2002) Bioabsorbable anterior lumbar plate fixation in conjunction with anterior interbody fusion cages. Orthopedics Oct 25 [Suppl 10]:1,157–1,165Google Scholar
  15. 15.
    Emery SE, Brazinski MS, Koka A, Bensusan JS, Stevenson S (1994) The biological and biomechanical effects of irradiation on anterior spinal bone grafts in a canine model. J Bone Joint Surg Am 76:540–548PubMedGoogle Scholar
  16. 16.
    Eppley BL, Sadove AM (1995) A comparison of resorbable and metallic fixation in healing of calvarial bone grafts. Plast Reconst Surg 96:316–322PubMedGoogle Scholar
  17. 17.
    Feighan JE, Stevenson S, Emery SE (1995) Biologic and biomechanic evaluation of posterior lumbar fusion in the rabbit. The effect of fixation rigidity. Spine 20:1,561–1,567PubMedGoogle Scholar
  18. 18.
    Gill LH, Martin DF, Coumas JM, Kiebzak GM (1997) Fixation with bioabsorbable pins in chevron bunionectomy. J Bone Joint Surg Am 79:1,510–1,518CrossRefPubMedGoogle Scholar
  19. 19.
    Gogolewski S (2000) Bioresorbable polymers in trauma and bone surgery. Injury 31:28–32CrossRefPubMedGoogle Scholar
  20. 20.
    Hirvensalo E (1989) Fracture fixation with biodegradable rods. Forty-one cases of severe ankle fractures. Acta Orthop Scand 60:601PubMedGoogle Scholar
  21. 21.
    Hirvensalo E, Böstman O, Rokkanen P (1990) Absorbable polyglycolide pins in fixation of displaced fractures of the radial head. Arch Orthop Trauma Surg 109:258–261PubMedGoogle Scholar
  22. 22.
    Johnsson R, Axelsson P, Stromqvist B (1997) Posterolateral lumbar fusion using facet joint fixation with biodegradable rods: a pilot study. Eur Spine J 6(2):144–148PubMedGoogle Scholar
  23. 23.
    Kanayama M, Cunningham BW, Weis JC, Parker LM, Kaneda K, McAfee PC (1997) Maturation of the posterolateral fusion and its effect on load-sharing of spinal instrumentation. J Bone Joint Surg Am 79:1,710–1,720CrossRefPubMedGoogle Scholar
  24. 24.
    Lowe TG, Coe JD (2002) Bioresorbable polymer implants in the unilateral transforaminal lumbar interbody fusion procedure. Orthopedics Oct 25 [Suppl 10]:1,179–1,183Google Scholar
  25. 25.
    Poynton AR, Zheng F, Tomin E, Lane JM, Cornwall B (2002) Resorbable posterolateral graft containment in a rabbit fusion model. Orthopedics Oct 25 [Suppl 10]:1,173–1,117Google Scholar
  26. 26.
    Toth JM, Estes BT, Wang M, Seim HB 3rd, Scifert JL, Turner AS, Cornwall GB (2002) Evaluation of 70/30 D,L-PLa for use as a resorbable interbody fusion cage. Orthopedics Oct 25 [Suppl 10]:1,131–1,140Google Scholar
  27. 27.
    Vaccaro AR, Madigan L (2002) Spinal applications of bioabsorbable implants. Orthopedics Oct 25 [Suppl 10]:1,115–1,120Google Scholar
  28. 28.
    Vaccaro AR, Carrino JA, Venger BH, Albert T, Kelleher PM, Hilibrand A, Singh K (2002) Use of a bioabsorbable anterior cervical plate in the treatment of cervical degenerative and traumatic disc disruption. J Neurosurg 97 [Suppl 4]:473–480Google Scholar
  29. 29.
    Van Dijk M, Smit TH, Sugihara S, Burger EH, Wuisman PI (2002) The effect of cage stiffness on the rate of lumbar interbody fusion: an in vivo model using poly (l-lactic acid) and titanium cages. Spine 27:682–688CrossRefPubMedGoogle Scholar
  30. 30.
    Van Dijk M, Smit TH, Burger EH, Wuisman PI (2002) Bioabsorbable poly-L-lactic acid cages for lumbar interbody fusion: three-year follow-up radiographic, histologic and histomorphometric analysis in goats. Spine 27:2,706–2,714CrossRefGoogle Scholar
  31. 31.
    Viljanen J, Kinnunen J, Bondestam S, Majola A, Rokkanen P, Tormala P (1995) Bone changes after experimental osteotomies fixed with absorbable self-reinforced poly-L-lactide screws or metallic screws studied by plain radiographs, quantitative computed tomography and magnetic resonance imaging. Biomaterials. 16:1,353–1,358Google Scholar
  32. 32.
    Viljanen J, Pihlajamaki H, Majola A, Tormala P, Rokkanen P (1997) Absorbable polylactide pins versus metallic K-wires in the fixation of cancellous bone osteotomies in rats. Ann Chir Gynaecol 86(1):66–73PubMedGoogle Scholar
  33. 33.
    Wuisman PIJM, Van Dijk M, Smit TH (2002) Resorbable cages for spinal fusion: an experimental goat model. Orthopedics Oct 25 [Suppl 10]:1,141–1,148Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Murat Bezer
    • 1
    Email author
  • Yakup Yildirim
    • 2
  • Bülent Erol
    • 1
  • Osman Güven
    • 3
  1. 1.Department of Orthopaedic SurgeryThe Hospital of University of MarmaraIstanbulTurkey
  2. 2.Department of Orthopaedic SurgeryAcıbadem HospitalIstanbulTurkey
  3. 3.Department of Orthopedic SurgeryMarmara University School of MedicineIstanbulTurkey

Personalised recommendations