Advertisement

Combined effects of dietary bovine lactoferrin, Lactobacillus plantarum, and xylooligosaccharide on hemato-immunological and digestive enzymes of silvery-black porgy (Sparidentex hasta) fingerlings

  • Vahid Morshedi
  • Naser AghEmail author
  • Jasem G. Marammazi
  • Farzaneh Noori
  • Takavar Mohammadian
  • Mansour Torfi Mozanzadeh
Original Article
  • 15 Downloads

Abstract

A 6-week study was conducted to evaluate the effects of the following eight experimental diets, which varied in bovine lactoferrin (LF), xylooligosacharide (XOS), and Lactobacillus plantarum (LP) as probiotic silvery-black porgy (Sparidentex hasta) juveniles including control (diet 1), 400 mg kg−1 LF + 5 g kg−1 XOS (diet 2), 400 mg kg−1 LF + 10 g kg−1 XOS (diet 3), 400 mg kg−1 LF + 1 × 106 CFU g−1 LP (diet 4), 800 mg kg−1 LF + 5 g kg−1 XOS (diet 5), 800 mg kg−1 LF + 10 g kg−1 XOS (diet 6), and 400 mg kg−1 LF + 1 × 106 CFU g−1 LP (diet 7). Growth performance and humoral immune responses were not affected by different experimental groups (P > 0.05). Hematological parameters including red blood cell count, hemoglobin content, and hematocrit increased by supplementing diets with different combinations of immunostimulants (P < 0.05). Fish fed diet supplemented with 800 mg kg−1 LF + 5 g kg−1 XOS had highest total protease (1.0 ± 0.1 U mg protein−1) and α-amylase (34.9 ± 2.3 mg protein−1) activities (P < 0.05). Our results suggest that diets supplemented with selected levels of LF, XOS, and L. plantarum could not improve growth performance and humoral immunity, however improved hematological and digestive enzyme activities in S. hasta fingerlings.

Keywords

Hematology Intestine flora Immunostimulants Prebiotic Probiotic Sparidae 

Notes

Acknowledgments

Authors are grateful to the director (Mr. Mojtaba Zabayeh Najafabadi) and staff of the Mariculture Research Station, Sarbandar, Iran, for providing the necessary facilities for conducting this project.

Funding

This article is extracted from the project recorded under code number of 93027514 and financially supported by Iran National Science Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. Aachary AA, Prapulla SG (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr Rev Food Sci Food Saf 10:1–16CrossRefGoogle Scholar
  2. Akhter N, Wu B, Memon AM, Mohsin M (2015) Probiotics and prebiotics associated with aquaculture. A review. Fish Shellfish Immunol 45:733–741CrossRefGoogle Scholar
  3. Andrews SR, Sahu NP, Pal AK, Kumar S (2009) Hematological modulation and growth of Labeo rohita fingerlings: effect of dietary mannanoligosaccharide, yeast extract, protein hydrolysate and chlorella. Aquac Res 41:61–69CrossRefGoogle Scholar
  4. Aranishi F, Nakane M (1997) Epidermal protease of the Japanese eel. Fish Physiol Biochem 16:471–478CrossRefGoogle Scholar
  5. Azimirad M, Meshkini S, Ahmadifard N, Hoseinifar SH (2016) The effects of feeding with synbiotic (Pediococcus acidilactici and fructooligosaccharide) enriched adult Artemia on skin mucus immune responses, stress resistance, intestinal microbiota and performance of angelfish (Pterophyllum scalare). Fish Shellfish Immunol 54:516–522CrossRefGoogle Scholar
  6. Barta O (1993) Veterinary clinical immunology laboratory (Monographs in Animal Immunology) Vol 2, Section 3. Bar-Lab Inc Publications, pp 24–25Google Scholar
  7. Blaxhall PC, Daisley KW (1973) Routine hematological methods for use fish with blood. J Fish Biol 5:771–781CrossRefGoogle Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  9. Dawood MAO, Koshio S, Ishikawa M, Yokoyama S (2015a) Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and ß-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish Shellfish Immunol 45:33–42CrossRefGoogle Scholar
  10. Dawood MAO, Koshio S, Ishikawa M, Yokoyama S (2015b) Effects of heat killed Lactobacillus plantarum (LP20) supplemental diets on growth performance, stress resistance and immune response of Red sea bream, Pagrus major. Aquaculture 442:29–36CrossRefGoogle Scholar
  11. Dawood MAO, Koshio S, Ishikawa M, Yokoyama S, El Basuini MF, Hossain MS, Nhu TH, Dossou S, Moss AS (2016) Effects of dietary supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the growth, gut microbiota and immune responses of red sea bream, Pagrus major. Fish Shellfish Immunol 49:275–285CrossRefGoogle Scholar
  12. Dawood MAO, Koshio S, Esteban MA (2017) Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev Aquac 0:1–25Google Scholar
  13. Dimitroglou A, Merrifield DL, Spring P, Sweetman J, Moate R, Davies SJ (2010) Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata). Aquaculture 300:182–188CrossRefGoogle Scholar
  14. Ellis AE (1990) Serum antiproteases in fish and lysozyme assays. In: Stolen JS, Fletcher TC, Anderson DP, Roberson BS, Van Muiswinkel WB (eds) Techniques in fish immunology. SOS Publications, Fair Haven NJ, pp 95–103Google Scholar
  15. Eslamloo K, Morshedi V, Azodi M, Ashouri G, Ali M, Iqbal F (2012a) Effects of starvation and re-feeding on growth performance, feed utilization and body composition on tinfoil barb (Barbonymus schwanenfeldii). World J Fish Mar Sci 4(5):489–495Google Scholar
  16. Eslamloo K, Falahatkar B, Yokoyama S (2012b) Effects of dietary bovine lactoferrin on growth, physiological performance, iron metabolism and non-specific immune responses of Siberian sturgeon Acipenser baeri. Fish Shellfish Immunol 32(6):976–985CrossRefGoogle Scholar
  17. Esteban MA, Rodriguez A, Cuesta A, Meseguer J (2005) Effects of lactoferrin on non-specific immune responses of gilthead seabream Sparus aurata. Fish Shellfish Immunol 18:109–124CrossRefGoogle Scholar
  18. Garcia-Carreno FL, Haard NF (1993) Characterization of proteinase classes in langostilla (Pleuroncodes planipes) and crayfish (Pacifastacus astacus) extracts. J Food Biochem 17:97–113CrossRefGoogle Scholar
  19. Geraylou Z, Souffreau C, Rurangwa E, D’Hondt S, Callewaert L, Courtin CM, Delcour JA, Buyse J, Ollevier F (2012) Effects of arabinoxylan-oligosaccharides (AXOS) on juvenile Siberian sturgeon (Acipenser baerii) performance, immune responses and gastrointestinal microbial community. Fish Shellfish Immunol 33:718–724CrossRefGoogle Scholar
  20. Giansanti F, Panella G, Leboffe L, Antonini G (2016) Lactoferrin from milk: nutraceutical and pharmacological properties. Pharmaceuticals 9(4):61CrossRefGoogle Scholar
  21. Gisbert E, Mozanzadeh MT, Kotzamanis Y, Estevez A (2016) Weaning wildflathead grey mullet (Mugil cephalus) fry with diets with different levels of fish meal substitution. Aquaculture 462:92–100CrossRefGoogle Scholar
  22. Grisdle-Helland BG, Helland SJ, Gatlin DM (2008) The effect of dietary supplementation with mannanoligosacchare, fructooligosaccharide or galactooligosaccharide on the growth Atlantic salmon (Salmo salar). Aquaculture 283:163–167CrossRefGoogle Scholar
  23. Guan Y, Zhou H, Wang Z (2011) Effects of xylooligosaccharide on growth performance, activities of digestive enzymes, and intestinal microflora of juvenile Pelodiscus sinensis. Front Agric China 5:612–617CrossRefGoogle Scholar
  24. Guzman-Villanueva LT, Tovar-Ramirez D, Gisbert E, Cordero H, Guardiola FA, Cuesta A, Meseguer J, Ascencio-Valle F, Esteban MA (2014) Dietary administration of beta-1,3/1,6-glucan and probiotic strain Shewanella putrefaciens, single or combined, on gilthead seabream growth, immune responses and gene expression. Fish Shellfish Immunol 39:34–41CrossRefGoogle Scholar
  25. Hoseinifar SH, Mirvaghefi A, Mojazi Amiri B, Khoshbavar Rostami H, Merrifield DL (2011) The effects of oligofructose on growth performance, survival and autochthonous intestinal microbiota of beluga (Huso huso) juveniles. Aquac Nutr 17:498–504CrossRefGoogle Scholar
  26. Hosseinifar SH, Sharifian M, Mj V, Khalili M, Esteban MA (2014) The effects of dietary xylooligosaccharide on mucosal parameters, intestinal microbiota and morphology and growth performance of Caspian white fish (Rutilus frisiikutum) fry. Fish Shellfish Immunol 39:231–236CrossRefGoogle Scholar
  27. Iijima N, Tanaka S, Ota Y (1998) Purification and characterization of bile salt activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish Physiol Biochem 18:59–69CrossRefGoogle Scholar
  28. Irianto A, Austin B (2002) Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25:333–342CrossRefGoogle Scholar
  29. Kajita Y, Sakai M, Atsuta S, Kobayash M (1990) The immunonodulatory effects of levamisole on rainbow trout, Oncorhynchus mykiss. Fish Pathol 25:93–98CrossRefGoogle Scholar
  30. Kawakami H, Hiratsuka M, Dosako S (1988) Effects of iron-saturated lactoferrin on iron absorption. Agric Biol Chem 52:903–908Google Scholar
  31. Khademi F, Sajadi MM, Sourinejad I, Daryai R, Kondor AT (2013) Effects of dietary Protexin supplementation on growth performance and survival of sobaity (Sparidentex hasta). J Aquac (In Persian) 3:65–78Google Scholar
  32. Kumari J, Swain T, Sahoo PK (2003) Dietary bovine lactoferrin induces changes in immunity level and disease resistance in Asian catfish Clarias batrachus. Vet Immunol Immunopathol 94:1–9CrossRefGoogle Scholar
  33. Lee W, Ahn G, Oh JY, Kim SM, Kang N, Kim EA, Kim KN, Jeong JB, Jeon YJ (2016) A prebiotic effect of Ecklonia cava on the growth and mortality of olive flounder infected with pathogenic bacteria. Fish Shellfish Immunol 51:313–320CrossRefGoogle Scholar
  34. Liu W, Ran C, Liu Z, Gao Q, Xu S, Ringø E, Myklebust R, Gu Z, Zhou Z (2016) Effects of dietary Lactobacillus plantarum and AHL lactonase on the control of Aeromonas hydrophila infection in tilapia. Microbiologyopen 5(4):687–699CrossRefGoogle Scholar
  35. Lygren B, Sveier H, Hjeltnes B, Waagbø R (1999) Examination of the immunomodulatory properties and the effect on disease resistance of dietary bovine lactoferrin and vitamin C fed to Atlantic salmon (Salmo salar) for a short-term period. Fish Shellfish Immunol 9:95–107CrossRefGoogle Scholar
  36. Mohammadian T, Alishahi M, Tabandeh MR, Ghorbanpoor M, Gharibi D (2017) Effect of Lactobacillus plantarum and Lactobacillus delbrueckii subsp. bulgaricus on growth performance, gut microbial flora and digestive enzymes activities in Tor grypus (Karaman, 1971). Iran J Fish Sci 16:296–317Google Scholar
  37. Mohapatra S, Chakrabory T, Prusty AK, Das P, Paniprasad K, Mohanta KN (2012) Use of different microbial probiotics in the diet of rohu, Labeo rohita fingerlings: effects on growth, nutrient digestibility and retention, digestive enzyme activities and intestinal microflora. Aquac Nutr 18:1–11CrossRefGoogle Scholar
  38. Moradian AM, Dorafshan S, Paykan Heyrati F, Ebrahimi E (2017) Effects of dietary bovine lactoferrin on growth, haemato-biochemical parameters, immune functions and tolerance to air exposure stress in the African cichlid Sciaenochromis fryeri. Aquac Nutr 24(1):392–399CrossRefGoogle Scholar
  39. Morshedi V, Agh N, Marammazi J, Noori F, Mohammadian T (2015) Effects of dietary lactoferrin on growth performance, feed utilization, hematological and non-specific immune responses in sobaity (Sparidentex hasta) fingerling. J Anim Environ (In Persian) 2:189–198Google Scholar
  40. Morshedi V, Agh N, Marammazi J, Noori F, Mohammadian T (2016a) Effects of different levels of dietary lactoferrin on digestive enzymes, body composition and intestine bacterial flora of sobaity (Sparidentex hasta) fingerling. Vet J (In Persian) 113:65–74Google Scholar
  41. Morshedi V, Agh N, Marammazi J, Noori F, Mohammadian T (2016b) Evaluation of digestive enzymes activities, carcass biochemical composition and gut bacterial flora in sobaity (Sparidentex hasta) fingerlings in response to different dietary xylooligosacharide levels. Anim Physiol Dev (In Persian) 8:37–47Google Scholar
  42. Morshedi V, Agh N, Marammazi J, Noori F, Mohammadian T (2016c) Effects of dietary xylooligosacharide on growth and feed utilization, hematological and non-especific immune parameters of sobaity (Sparidentex hasta) fingerlings. J Mari Biol (In Persian) 26:69–82Google Scholar
  43. Mozanzadeh MT, Marammazi JG, Yaghoubi M, Agh N, Pagheh E, Gisbert E (2017a) Macronutrient requirements of silvery-black porgy (Sparidentex hasta): a comparison with other farmed sparid species. Fishes 2(2):5CrossRefGoogle Scholar
  44. Mozanzadeh MT, Yaghoubi Y, Marammazi JG, Safari O, Gisbert E (2017b) Hemato-immunological and plasma biochemical responses of silvery-black porgy (Sparidentex hasta) fed protein and essential amino acid deficient diets. Comp Clin Pathol 27(1):55–60CrossRefGoogle Scholar
  45. Mussatto SI, Mancilha IM (2007) Non-digestible oligosaccharides: a review. Carbohydr Polym 68:587–597CrossRefGoogle Scholar
  46. Nekoubin H, Sudagar M (2012) Assessment of the effects of synbiotic (biomin imbo) via supplementation with artificial diet (with different protein levels) on growth performance and survival rate in grass carp (Ctenopharyngodon idella). World J Zool 7:236–240Google Scholar
  47. Pagheh E, Marammazi JG, Agh N, Nouri F, Sepahdari A, Gisbert E, Mozanzadeh MT (2017) Growth performance, hemato-immunological responses and digestive enzymes activities in silvery-black porgy (Sparidentex hasta) fed dietary bovine lactoferrin. Probiotics Antimicrob Proteins 10(3):399–407CrossRefGoogle Scholar
  48. Rahimnejad S, Agh N, Kalbassi MR, Khosravi S (2012) Effect of dietary bovine lactoferrin on growth, haematology and non-specific immune response in rainbow trout (Oncorhynchus mykiss). Aquac Res 43:1451–1459CrossRefGoogle Scholar
  49. Ray AK, Ghosh K, Ringø E (2012) Enzyme-producing bacteria isolated from fish gut: a review. Aquac Nutr 18:465–492CrossRefGoogle Scholar
  50. Ren T, Koshio S, Ishikawa M, Yokoyama S, Micheal FR, Uyan O, Tung TH (2007) Influence of dietary vitamin C and bovine lactoferrin on blood chemistry and non-specific immune responses of Japanese eel, Anguilla japonica. Aquaculture 267:31–37CrossRefGoogle Scholar
  51. Rodriguez-Estrada U, Satoh S, Haga Y, Fushimi H, Sweetman J (2009) Effects of single and combined supplementation of Enterococcus faecalis, mannanoligosaccharide and polyhydrobutyric acid on growth performance and immune response of rainbow trout Oncorhynchus mykiss. Suisanzoshoku 57:609–617Google Scholar
  52. Sado RY, Bicudo AJDA, Cyrno JEP (2008) Feeding dietary mannanoligosaccharid to juvenile Nile Tilapia (Oreochromis niloticus), has no effect on hematological parameters and showed decreased feed consumption. J World Aquacult Soc 39:821–826CrossRefGoogle Scholar
  53. Siwicki AK, Anderson DP, Rumsey GL (1994) Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet Immunol Immunopathol 41:125–139CrossRefGoogle Scholar
  54. Son VM, Chang CC, Wu MC, Guu YK, Chiu CH, Cheng W (2009) Dietary administration of the probiotic, Lactobacillus plantarum, enhanced the growth, innate immune responses, and disease resistance of the grouper Epinephelus coioides. Fish Shellfish Immunol 26:691–698CrossRefGoogle Scholar
  55. Talpur AD, Munir MB, Mary A, Hashim R (2014) Dietary probiotics and prebiotics improved food acceptability, growth performance, haematology and immunological parameters and disease resistance against Aeromonas hydrophila in snakehead (Channa striata) fingerlings. Aquaculture 426-427:14–20CrossRefGoogle Scholar
  56. Vallejos-Vidal E, Reyes-López F, Teles M, MacKenzie S (2016) The response of fish to immunostimulant diets. Fish Shellfish Immunol 56:34–69CrossRefGoogle Scholar
  57. Van Doan H, Doolgindachbaporn S, Suksri A (2014) Effects of low molecular weight agar and Lactobacillus plantarum on growth performance, immunity, and disease resistance of basafish (Pangasius bocourti, Sauvage 1880). Fish Shellfish Immunol 41:340–345CrossRefGoogle Scholar
  58. Van Doan H, Hoseinifar SH, Tapingkae W, Tongsiri S, Khamtavee P (2016) Combined administration of low molecular weight sodium alginate boosted immunomodulatory, disease resistance and growth enhancing effects of Lactobacillus plantarum in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 58:678–685CrossRefGoogle Scholar
  59. Wang W, Sun J, Liu C, Xue Z (2017) Application of immunostimulants in aquaculture: current knowledge and future perspectives. Aquac Res 48:1–23CrossRefGoogle Scholar
  60. Welker TL, Lim C, Yildirim-Aksoy M, Klesius PH (2007) Growth, immune function, and disease and stress resistance of juvenile Nile tilapia (Oreochromis niloticus) fed graded levels of bovine lactoferrin. Aquaculture 262:156–162CrossRefGoogle Scholar
  61. Welker TL, Lim C, Yildirim-Aksoy M, Klesius PH (2010) Dietary bovine lactoferrin increases resistance of juvenile channel catfish, Ictalurus punctatus, to enteric septicemia. J World Aquacult Soc 41:28–39CrossRefGoogle Scholar
  62. Worthington C (1991) Worthington enzyme manual related biochemical. USA, FreeholdGoogle Scholar
  63. Xu B, Wang Y, Li J, Lin Q (2009) Effect of prebiotic xylooligosaccharides on growth performances and digestive enzyme activities of allogynogenetic crucian carp (Carassius auratus gibelio). Fish Physiol Biochem 35:351–357CrossRefGoogle Scholar
  64. Yaghoubi M, Mozanzadeh MT, Marammazi JG, Safari O, Gisbert E (2016) Dietary replacement of fish meal by soy products (soybean meal and isolated soy protein) in silvery-black porgy juveniles (Sparidentex hasta). Aquaculture 468:50–59CrossRefGoogle Scholar
  65. Yokoyama S, Koshio S, Takakura N, Oshida K, Ishikawa M, Gallardo Cigarroa FJ, Teshima S-I (2005) Dietary bovine lactoferrin enhances tolerance to high temperature stress in Japanese flounder Paralichthys olivaceus. Aquaculture 249:367–373CrossRefGoogle Scholar
  66. Yokoyama S, Koshio S, Takakura N, Oshida K, Ishikawa M, Gallardo Cigarroa FJ, Catacutan MR, Teshima S (2006) Effect of dietary bovine lactoferrin on growth response, tolerance to air exposure and low salinity stress conditions in orange spotted grouper Epinephelus coioides. Aquaculture 255:507–513CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Persian Gulf Research InstitutePersian Gulf UniversityBushehrIran
  2. 2.Artemia and Aquaculture Research InstituteUrmia UniversityUrmiaIran
  3. 3.South Iranian Aquaculture Research CenterAhwazIran
  4. 4.Department of Clinical Sciences, Faculty of Veterinary MedicineShahid Chamran University of AhwazAhwazIran

Personalised recommendations