Advertisement

Hematological value references for free-living saffron finch (Sicalis flaveola) using a machine-learning-based classifier

  • Márcio Luiz Passabom Jacob
  • Célio Siman Mafra Nunes
  • Paola Cristina de Oliveira Borba
  • Gabrielly Pereira Ribeiro
  • Tadeu Uggere de Andrade
  • Denise Coutinho Endringer
  • Dominik Lenz
Original Article
  • 25 Downloads

Abstract

Sicalis flaveola, also known as saffron finch, has now become a species of interest to researchers and scholars in the area, due to illegal trade and the destruction of its natural habitat. Among the ways to evaluate cells, the automatic counting method through image cytometry has been highlighted. The present study aims to evaluate the image cytometry method as an alternative for use for data analysis tool.

Keywords

Sicalis flaveola Image cytometry CellProfiler Machine learning 

Notes

Compliance with ethical standards

The samples used are from a previous primary study which has been approved by the Animal Ethics Committee of the University of Vila Velha (no. 267/2013) and by the Authorization and Information System on Biodiversity (SISBIO) (20216-1).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Alves RRN, Leite RCL, Souto WMS, Bezerra DMM, Loures-Ribeiro A (2013) Ethno-ornithology and conservation of wild birds in the semi-arid Caatinga of northeastern Brazil. J Ethnobiol Ethnomed 9:14CrossRefGoogle Scholar
  2. Beaufrère H, Ammersbach M, Tully TN Jr (2013) Complete blood cell count in psittaciformes by using high-throughput image cytometry: a pilot study. J Avian Med Surg 27(3):211–217CrossRefGoogle Scholar
  3. Buzin AR, Pinto FE, Nieschke K, Mittang A, Andrade TU, Endringer DC, Tarnok A, Lenz D (2015) Replacement of specific markers for apoptosis and necrosis by nuclear morphology for affordable cytometry. J Immunol Methods Brazil 420:24–30CrossRefGoogle Scholar
  4. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100CrossRefGoogle Scholar
  5. Danuser G (2011) Computer vision in cell biology. Cell 147(5):973–978CrossRefGoogle Scholar
  6. Diem K, Magaret A, Klock A, Jin L, Zhu J, Corey L (2015) Image analysis for accurately counting CD4+ and CD8+ T cells in human tissue. J Virol Methods 222:117–121CrossRefGoogle Scholar
  7. Hamilton NA, Pantelic RS, Hanson K, Teasdale RD (2007) Fast automated cell phenotype image classification. BMC Bioinformatics 8:110CrossRefGoogle Scholar
  8. Jones TR, Kang IH, Wheeler DB, Lindquist RA, Papallo A, Sabatini DM, Golland P, Carpenter AE (2008) CellProfiler analyst: data exploration and analysis software for complex image-based screens. BMC Bioinformática 9:482CrossRefGoogle Scholar
  9. Krajewska M, Smith LH, Rong J, Huang X, Hyer ML, Zeps N, Iacopetta B, Linke SP, Olson AH, Reed JC, Krajewski S (2009) Image analysis algorithms for immunohistochemical assessment of cell death events and fibrosis in tissue sections. J Histochem Cytochem 57(7):649–663CrossRefGoogle Scholar
  10. Lamprecht MR, Sabatini DM, Carpenter AE (2007) CellProfiler: free, versatile software for automated biological image analysis. Biotechniques USA 42(1):71–75CrossRefGoogle Scholar
  11. Melzer S, Nunes CSM, Endringer DC, Andrade TU, Tarnok A, Lenz D (2016) Trypan blue as an affordable marker for automated live-dead cell analysis in image cytometry. Scanning 36:854–863Google Scholar
  12. Milenkaya O, Weinstein N, Legge S, Walters JR (2013) Variation in body condition indices of crimson finches by sex, breeding stage, age, time of day, and year. Conserv Physiol 1(1):cot020CrossRefGoogle Scholar
  13. Mittag A, Pinto FE, Endringer DC, Tarnok A, Lenz D (2011) Cellular analysis by open-source software for affordable cytometry. Scanning 33:33–40CrossRefGoogle Scholar
  14. Nelissen BGL, van Herwaarden JA, Moll FL, van Diest PJ, Pasterkamp G (2014) SlideToolkit: an assistive toolset for the histological quantification of whole slide images. PLoS ONE 9(11):e110289CrossRefGoogle Scholar
  15. Nunes CSM, Tarnok A, Mittag, A, Andrade TU, Endringer DC, Lenz D. Comp Clin Pathol (2017) Differentiation of populations with different fluorescence intensities with a machine-learning based classifier 26: 385Google Scholar
  16. Pinto FE, Neto EP, Andrade TU, Endringer DC, Lenz D (2016) Novel data for free-living saffron finch (Sicalis flaveola): reference hematological value and body mass. Comp Clin Pathol 25:465CrossRefGoogle Scholar
  17. Rexhepaj E, Agnarsdóttir M, Bergman J, Edqvist P-H, Bergqvist M, Uhlén M, Gallagher WM, Lundberg E, Ponten F (2013) A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections. PLoS One 8(5):e62070CrossRefGoogle Scholar
  18. Sepp T, Sild E, Hõrak P (2010) Hematological condition indexes in greenfinches: effects of captivity and diurnal variation. Physiol Biochem Zool 83(2):276–282CrossRefGoogle Scholar
  19. Silveira LF, Méndez AC (1999) Caracterização das formas brasileiras do gênero Sicalis (Passeriformes, Emberizidae). Atualidades Orni-tológicas 90:06–08Google Scholar
  20. Tozetti PB, Lima EM, Nascimento AM, Endringer DC, Pinto FE, Andrade TU, Mittag A, Tarnok A, Lenz D (2014) Morphometry to identify subtypes of leukocytes. HematolOncol Stem Cell Ther 7:69–75CrossRefGoogle Scholar
  21. Zerbe N, Hufnagl P, Schlüns K (2011) Distributed computing in image analysis using open source frameworks and application to image sharpness assessment of histological whole slide images. Diagn Pathol 6(1):S16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Márcio Luiz Passabom Jacob
    • 1
  • Célio Siman Mafra Nunes
    • 1
  • Paola Cristina de Oliveira Borba
    • 1
  • Gabrielly Pereira Ribeiro
    • 1
  • Tadeu Uggere de Andrade
    • 1
  • Denise Coutinho Endringer
    • 1
  • Dominik Lenz
    • 1
  1. 1.Department of PharmacologyUniversidade Vila VelhaVila VelhaBrazil

Personalised recommendations