Advertisement

Comparative Clinical Pathology

, Volume 25, Issue 1, pp 107–118 | Cite as

Protection by intraperitoneal administration of bone marrow-derived stem cells of lipopolysaccharide-induced brain and liver damage in mice

  • Omar M. E. Abdel-Salam
  • Eman R. Youness
  • Enayat A. Omara
  • Marawa El-Sayed El-Shamarka
  • Amany A. Sleem
Original Article
  • 141 Downloads

Abstract

Stem cells induce functional improvement in experimental and clinical studies, but its mechanism is still not known. This paper studies the effect of a single systemic injection of bone marrow-derived stem cell (BM-SC) suspension on brain oxidative stress and on pathological changes induced in the brain and liver of mice by lipopolysaccharide (LPS) endotoxin. Moreover, the possible cholinergic modulation of stem cell effects was also studied. Mice were treated with intraperitoneal (i.p.) injection of stem cell suspension or saline with or without subcutaneous atropine (1 mg/kg) at time of LPS (200 μg/kg, i.p.) administration and euthanized 4 h later. Results showed that the administration of LPS increased oxidative stress in the brain. Malondialdehyde (MDA) and nitric oxide increased along with decreased reduced glutathione (GSH) and paraoxonase 1 (PON1) activity. Neuronal degeneration, pyknotic nuclei with vacuolation in the cortex, striatum, and hippocampus were observed. In the liver, degeneration of hepatocytes and inflammatory cell infiltration were found. Intense caspase-3 expression also occurred in brain and liver tissue of LPS-treated mice. Stem cell treatment by itself showed no significant effects on brain levels of MDA, nitric oxide, or GSH, but decreased PON1 activity. In LPS-treated mice, BM-SCs had no effect on brain MDA or nitric oxide, but increased GSH compared with the LPS control group. Meanwhile, brain PON1 activity decreased after BM-SCs injection. Stem cells, however, reduced neuronal damage in the cortex, striatum, and hippocampus and also decreased inflammatory cell infiltration and hepatocyte degeneration in the liver. These effects showed a decrease after treatment with atropine. Immunohistochemical expression of caspase-3 and cyclooxygenase-2 in liver and brain tissue of LPS-treated mice was markedly inhibited by BM-SCs. The study indicates that the attenuation of tissue damage by BM-SCs was not due to a decreased oxidative stress. Rather, anti-apoptotic and anti-inflammatory mechanisms are likely to underlie the beneficial effects of BM-SCs injection. Our results also suggest the involvement of cholinergic mechanism in the effects of BM-SCs.

Keywords

Stem cells Oxidative stress Inflammation Lipopolysaccharide Cholinergic 

References

  1. Abdel Aziz MT, Wassef MA, Rashed LA, Mhfouz S, Omar N, Elsebaie MM (2011) Mesenchymal stem cells therapy in acute renal failure: possible role of hepatocyte growth factor. J Stem Cell Res Ther 1:3Google Scholar
  2. Abdel-Salam OME, Youness ER, Omara EA, Sleem AA (2014) Effect of adipose tissue-derived mesenchymal stem cell treatment on oxidative stress and inflammatory response following Escherichia coli lipopolysaccharide. Comp Clin Pathol. doi: 10.1007/s00580-014-1906-x Google Scholar
  3. Bal-Price A, Brown GC (2000) Nitric-oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria. J Neurochem 75:1455–1464CrossRefPubMedGoogle Scholar
  4. Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, Sudan S, Czura CJ, Ivanova SM, Tracey KJ (2002) Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med 195:781–788CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beurel E, Jope RS (2009) Lipopolysaccharide-induced interleukin-6 production is controlled by glycogen synthase kinase-3 and STAT3 in the brain. J Neuroinflammation 6:9CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blau HM, Brazelton TR, Weimann JM (2001) The evolving concept of a stem cell: entity or function? Cell 105:829–841CrossRefPubMedGoogle Scholar
  7. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462CrossRefPubMedGoogle Scholar
  8. Buttini M, Mir A, Appel K, Wiederhold KH, Limonta S, Gebicke-Haerter PJ, Boddeke HW (1997) Lipopolysaccharide induces expression of tumour necrosis factor alpha in rat brain: inhibition by methylprednisolone and by rolipram. Br J Pharmacol 122:1483–1489CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cao C, Matsumura K, Yamagata K, Watanabe Y (1995) Induction by lipopolysaccharide of cyclooxygenase-2 mRNA in rat brain; its possible role in the febrile response. Brain Res 697:187–196CrossRefPubMedGoogle Scholar
  10. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347CrossRefPubMedGoogle Scholar
  11. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688CrossRefPubMedGoogle Scholar
  12. de Jonge WJ, Ulloa L (2007) The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol 151:915–929CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dickinson DA, Forman HJ (2002) Cellular glutathione and thiols metabolism. Biochem Pharmacol 64:1019–1026CrossRefPubMedGoogle Scholar
  14. Einstein O, Fainstein N, Vaknin I, Mizrachi-Kol R, Reihartz E, Grigoriadis N, Lavon I, Baniyash M, Lassmann H, Ben-Hur T (2007) Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann Neurol 61:209–218CrossRefPubMedGoogle Scholar
  15. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem 82:70–77CrossRefPubMedGoogle Scholar
  16. Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 4:47CrossRefPubMedPubMedCentralGoogle Scholar
  17. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Clarendon, OxfordGoogle Scholar
  18. Hancock DB, Martin ER, Mayhew GM, Stajich JM, Jewett R, Stacy MA, Scott BL, Vance JM, Scott WK (2008) Pesticide exposure and risk of Parkinson’s disease: a family-based case-control study. BMC Neurol 8:6CrossRefPubMedPubMedCentralGoogle Scholar
  19. Higashino K, Takahashi Y, Yamamura Y (1972) Release of phenyl acetate esterase from liver microsomes by carbon tetrachloride. Clin Chim Acta 41:313–320CrossRefPubMedGoogle Scholar
  20. Hua XY, Chen P, Fox A, Myers RR (1996) Involvement of cytokines in lipopolysaccharide-induced facilitation of CGRP release from capsaicin-sensitive nerves in the trachea: studies with interleukin-1beta and tumor necrosis factor-alpha. J Neurosci 16:4742–4748PubMedGoogle Scholar
  21. Hunter JM, Nair VP (2004) Anticholinesterases and anticholinergic drugs. Contin Educ Anaesth Crit Care Pain 4:164–168CrossRefGoogle Scholar
  22. Huston JM, Gallowitsch-Puerta M, Ochani M, Ochani K, Yuan R, Rosas-Ballina M, Ashok M, Goldstein RS, Chavan S, Pavlov VA, Metz CN, Yang H, Czura CJ, Wang H, Tracey KJ (2007) Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med 35:2762–2768CrossRefPubMedGoogle Scholar
  23. Ilic D, Polak JM (2011) Stem cells in regenerative medicine: introduction. Br Med Bull 98:117–126CrossRefPubMedGoogle Scholar
  24. Iwase K, Miyanaka K, Shimizu A, Nagasaki A, Gotoh T, Mori M, Takiguchi M (2000) Induction of endothelial nitric-oxide synthase in rat brain astrocytes by systemic lipopolysaccharide treatment. J Biol Chem 275:11929–11933Google Scholar
  25. Jacewicz M, Czapski GA, Katkowska I, Strosznajder RP (2009) Systemic administration of lipopolysaccharide impairs glutathione redox state and object recognition in male mice. The effect of PARP-1 inhibitor. Folia Neuropathol 47:321–328PubMedGoogle Scholar
  26. Jeong H-K, Jou I, Joe EH (2010) Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantia nigra. Exp Mol Med 42:823–832CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kassis I, Grigoriadis N, Gowda-Kurkalli B, Mizrachi-Kol R, Ben-Hur T, Slavin S, Abramsky O, Karussis D (2008) Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol 65:753–761CrossRefPubMedGoogle Scholar
  28. Kim JM, Lee ST, Chu K, Jung KH, Song EC, Kim SJ, Sinn DI, Kim JH, Park DK, Kang KM, Hyung Hong N, Park HK, Won CH, Kim KH, Kim M, Kun Lee S, Roh JK (2007) Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain Res 1183:43–50CrossRefPubMedGoogle Scholar
  29. Koarai A, Traves SL, Fenwick PS, Brown SM, Chana KK, Russell RE, Nicholson AG, Barnes PJ, Donnelly LE (2012) Expression of muscarinic receptors by human macrophages. Eur Respir J 39:698–704CrossRefPubMedGoogle Scholar
  30. La Du BN (1992) Human serum paraoxonase: arylesterase. In: Kalow W (ed) Pharmacogenetics of drug metabolism. Pergamon, Elmford, pp 51–91Google Scholar
  31. Layé S, Gheusi G, Cremona S, Combe C, Kelley K, Dantzer R, Parnet P (2000) Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression. Am J Physiol Regul Integr Comp Physiol 279:R93–R98PubMedGoogle Scholar
  32. Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH, Ko Y, Jeong SW, Kim SU (2007) Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 25:1204–1212CrossRefPubMedGoogle Scholar
  33. Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE, Bae JS (2010) Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells 28:329–343PubMedGoogle Scholar
  34. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5:54–63CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, Hong NH, Kim JH, Ban JJ, Park HK, Kim SU, Park CG, Lee SK, Kim M, Roh JK (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131:616–662CrossRefPubMedGoogle Scholar
  36. Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 44:1094–1096CrossRefGoogle Scholar
  37. Mackness B, Quarck R, Verreth W, Mackness M, Holvoet P (2006) Human paraoxonase-1 overexpression inhibits atherosclerosis in a mouse model of metabolic syndrome. Arterioscler Thromb Vasc Biol 26:1545–1550CrossRefPubMedGoogle Scholar
  38. Milanesi A, Lee J-W, Li Z, Da Sacco S, Villani V et al (2012) b-Cell regeneration mediated by human bone marrow mesenchymal stem cells. PLoS ONE 7:e42177CrossRefPubMedPubMedCentralGoogle Scholar
  39. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142PubMedGoogle Scholar
  40. Moshage H, Kok B, Huizenga JR (1995) Nitrite and nitrate determination in plasma: a critical evaluation. Clin Chem 41:892–896PubMedGoogle Scholar
  41. Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49CrossRefPubMedGoogle Scholar
  42. Nguyen SD, Hung ND, Cheon-Ho P, Ree KM, Dai-Eun S (2009) Oxidative inactivation of lactonase activity of purified human paraoxonase 1 (PON1). Biochim Biophys Acta 1790:155–160CrossRefPubMedGoogle Scholar
  43. Noble F, Rubira E, Boulanouar M, Palmier B, Plotkine M, Warnet JM, Marchand-Leroux C, Massicot F (2007) Acute systemic inflammation induces central mitochondrial damage and amnesic deficit in adult Swiss mice. Neurosci Lett 424:106–110CrossRefPubMedGoogle Scholar
  44. Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 104:11002–11007CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pavlov VA, Ochani M, Gallowitsch-Puerta M, Ochani K, Huston JM, Czura CJ, Al-Abed Y, Tracey KJ (2006) Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. PNAS 103:5219–5223CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pérez-Nievas BG, Madrigal JL, García-Bueno B et al (2010) Corticosterone basal levels and vulnerability to LPS-induced neuroinflammation in the rat brain. Brain Res 1315:159–168CrossRefPubMedGoogle Scholar
  47. Pittenger MF (2008) Mesenchymal stem cells from adult bone marrow. In: Prockop DJ, Phinney DG, Bunnell BA (eds) Methods in molecular biology, vol. 449, mesenchymal stem cells: methods and protocols. Humana Press, Totowa, NJ, pp 27–31CrossRefGoogle Scholar
  48. Primo-Parmo SL, Sorenson RC, Teiber J, La Du BN (1996) The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics 33:498–507CrossRefPubMedGoogle Scholar
  49. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462CrossRefPubMedPubMedCentralGoogle Scholar
  50. Quan N, Stern EL, Whiteside MB, Herkenham M (1999) Induction of pro-inflammatory cytokine mRNAs in the brain after peripheral injection of subseptic doses of lipopolysaccharide in the rat. J Neuroimmunol 93:72–80CrossRefPubMedGoogle Scholar
  51. Ramsay MAE (2002) Will stem cells transform medicine? Proc (Bayl Univ Med Cent) 15:135–137Google Scholar
  52. Roddy GW, Oh JY, Lee RH, Bartosh TJ, Ylostalo J, Coble K, Rosa RH Jr, Prockop DJ (2011) Action at a distance: systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-α stimulated gene/protein 6. Stem Cells 29:1572–1579CrossRefPubMedGoogle Scholar
  53. Rodgerson DO, Harris AG (2011) A comparison of stem cells for therapeutic use. Stem Cell Rev Rep 7:782–796CrossRefGoogle Scholar
  54. Rodrigo L, Hernández AF, López-Caballero JJ, Gil F, Pla A (2001) Immunohistochemical evidence for the expression and induction of paraoxonase in rat liver, kidney, lung and brain tissue. Implications for its physiological role. Chem Biol Interact 137:123–137CrossRefPubMedGoogle Scholar
  55. Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, Tusche MW, Pavlov VA, Andersson U, Chavan S, Mak TW, Tracey KJ (2011) Acetylcholine-synthesizing t cells relay neural signals in a vagus nerve circuit. Science 334:98–101CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ruiz-Larrea MB, Leal AM, Liza M, Lacort M, de Groot H (1994) Antioxidant effects of estradiol and 2-hydroxyestradiol on ironinduced lipid peroxidation of rat liver microsomes. Steroids 59:383–388CrossRefPubMedGoogle Scholar
  57. Stemberger S, Jamnig A, Stefanova N, Lepperdinger G, Reindl M, Wenning GK (2011) Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: immunomodulation and neuroprotection. PLoS ONE 6:e19808CrossRefPubMedPubMedCentralGoogle Scholar
  58. Thippeswamy T, McKay JS, Quinn JP, Morris R (2006) Nitric oxide, a biological double-faced janus—is this good or bad? Histol Histopathol 21:445–458PubMedGoogle Scholar
  59. Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 289:F31–F42CrossRefPubMedGoogle Scholar
  60. Tracey KJ (2007) Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest 117:289–296CrossRefPubMedPubMedCentralGoogle Scholar
  61. Turrin NP, Gayle D, Ilyin SE, Flynn MC, Langhans W, Schwartz GJ, Plata-Salaman CR (2001) Pro-inflammatory and anti-inflammatory cytokine mRNA induction in the periphery and brain following intraperitoneal administration of bacterial lipopolysaccharide. Brain Res Bull 54:443–453CrossRefPubMedGoogle Scholar
  62. Vendrame M, Gemma C, de Mesquita D, Collier L, Bickford PC, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE (2005) Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev 14:595–604CrossRefPubMedGoogle Scholar
  63. Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T, Masuda J, Kobayashi S, Kim SU, Yamaguchi S (2010) Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res 88:1017–1025PubMedGoogle Scholar
  64. Wang H, Wu YB, Du XH (2005) Effect of dexamethasone on nitric oxide synthase and caspase-3 gene expressions in endotoxemia in neonate rat brain. Biomed Environ Sci 18:181–186PubMedGoogle Scholar
  65. Wang F, Yasuhara T, Shingo T, Kameda M, Tajiri N, Yuan WJ, Kondo A, Kadota T, Baba T, Tayra JT, Kikuchi Y, Miyoshi Y, Date I (2010) Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: focusing on neuroprotective effects of stromal cell-derived factor-1alpha. BMC Neurosci 11:52CrossRefPubMedPubMedCentralGoogle Scholar
  66. Watson AD, Berliner JA, Hama SY, La Du BN, Faull KF, Fogelman AM, Navab M (1995) Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity ofminimally oxidized low density lipoprotein. J Clin Invest 96:2882–2891Google Scholar
  67. Yañez R, Oviedo A, Aldea M, Bueren JA, Lamana ML (2010) Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells. Exp Cell Res 316:3109–3123CrossRefPubMedGoogle Scholar
  68. Zheng L, Chu J, Shi Y, Zhou X, Tan L, Li Q, Cui L, Han Z, Han Y, Fan D (2013) Bone marrow-derived stem cells ameliorate hepatic fibrosis by down-regulating interleukin-17. Cell Biosci 3:46CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 1147:93–104CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zhu X, Lee H-g, Casadesus G, Avila J, Drew K, Perry G, Smith MA (2005) Oxidative imblaance in Alzheimer’s disease. Mol Neurobiol 31:205–217CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Omar M. E. Abdel-Salam
    • 1
  • Eman R. Youness
    • 2
  • Enayat A. Omara
    • 3
  • Marawa El-Sayed El-Shamarka
    • 1
  • Amany A. Sleem
    • 4
  1. 1.Department of Toxicology and NarcoticsNational Research CentreDokkiEgypt
  2. 2.Department of Medical BiochemistryNational Research CentreDokkiEgypt
  3. 3.Department of PathologyNational Research CentreDokkiEgypt
  4. 4.Department of PharmacologyNational Research CentreDokkiEgypt

Personalised recommendations