Advertisement

Comparative Clinical Pathology

, Volume 24, Issue 4, pp 927–933 | Cite as

Effect of long-term intake of aspartame on serum biochemical parameters and erythrocyte oxidative stress biomarkers in rats

  • M. Abhilash
  • Mathews V. Varghese
  • M. V. Sauganth Paul
  • Manju Alex
  • R. Harikumaran NairEmail author
Original Article

Abstract

Aspartame is one of the most widely used artificial sweeteners globally. Data concerning acute toxicity of aspartame is controversial, and knowledge on its chronic effect is limited. The present study evaluates the effect of long-term intake of aspartame on serum biochemical parameters and erythrocyte antioxidant defence system in rats. Male Wistar rats, weighing 150–175 g, were randomly divided into one control group and three experimental groups. The control group received only drinking water, whereas the experimental groups were orally administered with aspartame at the concentrations of 50, 500 and 1000 mg/kg b.wt respectively for 180 days. Results showed that administration of aspartame (1000 mg/kg b.wt) caused a significant increase in the levels of serum total bilirubin (P < 0.05). The activity of glutathione peroxidase and glutathione reductase was significantly reduced in the erythrocytes of rats that had received aspartame (1000 mg/kg b.wt) (P < 0.05). Glutathione was significantly decreased in 500 mg/kg (P < 0.05) and 1000 mg/kg (P < 0.001) aspartame groups. It can be concluded from these observations that long-term consumption of aspartame leads to dose-dependent increase in free radical production and produces impairment in antioxidant status in erythrocytes mainly through alterations in glutathione-dependent system.

Keywords

Aspartame Erythrocytes Bilirubin Antioxidants Glutathione 

Notes

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. Abdel-Salam OM, Salem NA, Hussein JS (2012) Effect of aspartame on oxidative stress and monoamine neurotransmitter levels in lipopolysaccharide-treated mice. Neurotox Res 21(3):245–255PubMedCrossRefGoogle Scholar
  2. Abhilash M, Paul MV, Varghese MV, Nair RH (2011) Effect of long term intake of aspartame on antioxidant defense status in liver. Food Chem Toxicol 49:1203–1207PubMedCrossRefGoogle Scholar
  3. Abhilash M, Paul MVS, Varghese MV, Nair RH (2013) Long term consumption of aspartame and brain antioxidant defense status. Drug Chem Toxicol 36(2):135–140PubMedCrossRefGoogle Scholar
  4. Aebi H (1984) Catalase in vitro. In: Colowick SP, Kaplan NO (ed) Methods in Enzymology, Academic Press, Florida, 105, pp 114–21Google Scholar
  5. Alsuhaibani ES (2010) In vivo cytogenetic studies on aspartame Comp Funct Genomics. doi: 10.1155/2010/605921
  6. Amin KA, Hashem KS (2012) Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): antioxidant defense and role of alpha-tocopherol. BMC Vet Res 8:45PubMedCentralPubMedCrossRefGoogle Scholar
  7. Arora N, Goldhaber SZ (2006) Anticoagulants and transaminase elevation. Circulation 113(15):e698–e702PubMedCrossRefGoogle Scholar
  8. Belpoggi F, Soffritti M, Padovani M, Degli Esposti D, Lauriola M, Minardi F (2006) Results of long-term carcinogenicity bio-assay on Sprague–Dawley rats exposed to aspartame administered in feed. Ann NY Acad Sci 1076:559–577PubMedCrossRefGoogle Scholar
  9. Bergstrom BP, Cummings DR, Skaggs TA (2007) Aspartame decreases evoked extracellular dopamine levels in the rat brain: an in vivo voltammetry study. Neuropharmacol 53(8):967–974CrossRefGoogle Scholar
  10. Beuge JA, Aust SD (1978) The thiobarbituric acid assay. Methods Enzymol 52:306–307Google Scholar
  11. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888PubMedGoogle Scholar
  12. Brigelius-Flohe R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830(5):3289–3303PubMedCrossRefGoogle Scholar
  13. Burtis CA, Ashwood ER, Aldrich JE (1996) Tietz fundamentals of clinical chemistry. WB Saunders, PhiladelphiaGoogle Scholar
  14. Christian B, McConnaughey K, Bethea E, Coffey A, Hammond L, Harrell S, Metcalf K, Muehlenbein D, Spruill W, Brinson L, McConnaughey M (2004) Chronic aspartame affects T-maze performance, brain cholinergic receptors and Na+ K+-ATPase in rats. Pharmacol Biochem Behav 78:121–127PubMedCrossRefGoogle Scholar
  15. Clemens MR, Waller HD (1987) Lipid peroxidation in erythrocytes. Chem Phys Lipids 45:251–268PubMedCrossRefGoogle Scholar
  16. Davutoglu M, Guler E, Olgar S, Kurutas EB, Karabiber H, Garipardic M, Ekerbicer HC (2008) Oxidative stress and antioxidant status in neonatal hyperbilirubinemia. Saudi Med J 29(12):1743–1748PubMedGoogle Scholar
  17. Diomede L, Romano M, Guiso G, Caccia S, Nava S, Salmona M (1991) Interspecies and interstrain studies on the increased susceptibility to metrazol-induced convulsions in animals given aspartame. Food Chem Toxicol 29:101–106PubMedCrossRefGoogle Scholar
  18. Drabkin DL, Austin JM (1932) Spectrophotometric constants for common hemoglobin derivatives in human, dog and rabbit blood. J Biol Chem 98:719–733Google Scholar
  19. Fanouraki E, Divanach P, Pavlidis M (2007) Baseline values for acute and chronic stress indicators in sexually indicators in sexually immature red porgy (Pagrus pagrus). Aquaculture 265:294–304CrossRefGoogle Scholar
  20. FDA (Food and Drug Administration) (1996) Fed Reg 61:33654–33656Google Scholar
  21. Friedman LS, Martin P, Muooz SJ (1996) Liver function tests and the objective evaluation of the patient with liver disease. In: Hepatology: A Textbook of Liver Disease. 3rd edn (vol.I), WB Saunders Co, Philadelphia, pp 791–833Google Scholar
  22. Gebicki S, Gebicki JM (1993) Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem J 289:743–749PubMedCentralPubMedGoogle Scholar
  23. Goldberg MD, Spooner JR (1983) Glutathione reductase. In: Bergmayer HU, Bergmayer J, Grabi M (eds) Methods of enzymatic analysis, vol III, 3rd edn. Florida, Academic Press Inc, pp 258–265Google Scholar
  24. Gombos K, Varjas T, Orsos Z, Polyak E, Peredi J, Varga Z, Nowrasteh G, Tettinger A, Mucsi G, Ember I (2007) The effect of aspartame administration on oncogene and suppressor gene expressions. Vivo 21(1):89–92Google Scholar
  25. Harris C, Dixon M, Hansen JM (2004) Glutathione depletion modulates methanol, formaldehyde and formate toxicity in cultured rat conceptuses. Cell Biol Toxicol 20(3):133–145PubMedCrossRefGoogle Scholar
  26. Hawk PB (1965) Determination of serum sodium and potassium by using flame photometer. In: Hawk’s Physiology Chemistry, 14th edn. Mc Graw-Hill Book Co, New YorkGoogle Scholar
  27. Ilback NG, Alzin M, Jahrl S, Henghardt-Barbieri H, Busk L (2003) Estimated intake of the artificial sweeteners acesulfame-K, aspartame, cyclamate and saccharin in a group of Swedish diabetics. Food Addit Contam 20:99–114PubMedCrossRefGoogle Scholar
  28. Iman MM (2011) Effect of aspartame on some oxidative stress parameters in liver and kidney of rats. African J Pharm Pharmacol 5(6):678–682CrossRefGoogle Scholar
  29. Iyaswamy A, Rathinasamy S (2014) Biochemical responses and mitochondrial mediated activation of apoptosis on long-term effect of aspartame in rat brain. Redox Biol 2:820–831CrossRefGoogle Scholar
  30. Iyyaswamy A, Rathinasamy S (2012) Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats. J Biosci 37(4):679–688PubMedCrossRefGoogle Scholar
  31. Johlin FC, Fortman CS, Nghiem DD, Tephly TR (1987) Studies on the role of folic acid and folate-dependent enzymes in human methanol poisoning. Mol Pharmacol 31(5):557–561PubMedGoogle Scholar
  32. Jones DP, Go YM (2011) Mapping the cysteine proteome: analysis of redox-sensing thiols. Curr Opin Chem Biol 15:103–112PubMedCrossRefGoogle Scholar
  33. Kadiiska MB, Mason RP (2000) Acute methanol intoxication generates free radicals in rats: an ESR spin trapping investigation. Free Radic Biol Med 28(7):1106–1114PubMedCrossRefGoogle Scholar
  34. Kim JY, Seo J, Cho KH (2011) Aspartame-fed zebrafish exhibit acute deaths with swimming defects and saccharin-fed zebrafish have elevation of cholesteryl ester transfer protein activity in hypercholesterolemia. Food Chem Toxicol 49(11):2899–2905PubMedCrossRefGoogle Scholar
  35. Kruse JA (1992) Methanol poisoning. Intensive Care Med 18(7):391–397PubMedCrossRefGoogle Scholar
  36. Leme FAGL, Azoubel R (2006) Effects of aspartame on the exocrine pancreas of rat fetuses. Int J Morphol 24(4):679–684CrossRefGoogle Scholar
  37. Mattes RD, Popkin BM (2009) Nonnutritive sweetener consumption in humans: effects on appetite and food intake and their putative mechanisms. Am J Clin Nutr 89(1):1–14PubMedCentralPubMedCrossRefGoogle Scholar
  38. Mireles LC, Lum MA, Dennery PA (1999) Antioxidant and cytotoxic effects of bilirubin on neonatal erythrocytes. Pediatr Res 45:355–362PubMedCrossRefGoogle Scholar
  39. Muchova L, Vanova K, Zelenka J, Lenicek M, Petr T, Vejrazka M, Sticova E, Vreman HJ, Wong RJ, Vitek L (2011) Bile acids decrease intracellular bilirubin levels in the cholestatic liver: implications for bile acid-mediated oxidative stress. J Cell Mol Med 15(5):1156–1165PubMedCentralPubMedCrossRefGoogle Scholar
  40. Nguyen UN, Dumoulin G, Henriet MT, Regnard J (1998) Aspartame ingestion increases urinary calcium, but not oxalate excretion, in healthy subjects. J Clin Endocrino Metabol 83:165–168CrossRefGoogle Scholar
  41. Osfor MMH, Elias TR (2003) Nutritional and biochemical studies on some artificial sweeteners administered to male albino rats. Bull of the National Res Centre (Cairo) 28:377–401Google Scholar
  42. Oyama Y, Sakai H, Arata T, Okano Y, Akaike N, Sakai K (2002) Cytotoxic effects of methanol, formaldehyde, and formate on dissociated rat thymocytes: a possibility of aspartame toxicity. Cell Biol Toxicol 18(1):43–50PubMedCrossRefGoogle Scholar
  43. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169PubMedGoogle Scholar
  44. Paoletti F, Aldinucci D, Mocali A, Caparrini A (1986) A sensitive spectrophotometric method for the determination of the superoxide dismutase activity in tissue extract. J Biochem 154:536–541Google Scholar
  45. Prabhakar R, Vreven T, Morokuma K, Musaev DG (2005) Elucidation of the mechanism of selenoprotein glutathione peroxidase (GPx) catalyzed hydrogen peroxide reduction by two glutathione molecules: a density functional study. Biochemistry 44:11864–11871PubMedCrossRefGoogle Scholar
  46. Ranney RE, Oppermann JA, Muldoon E, McMahon FG (1976) Comparative metabolism of aspartame in experimental animals and humans. J Toxicol Environ Health 2(2):441–451Google Scholar
  47. Reiter RJ (2000) Melatonin: lowering the high price of free radicals. News Physiol Sci 15(5):246–250PubMedGoogle Scholar
  48. Rencuzogullari E, Tuylu BA, Topaktas M, Ila HB, Kayraldiz A, Arslan M, Diler SB (2004) Genotoxicity of aspartame. Drug Chem Toxicol 27:257–268PubMedCrossRefGoogle Scholar
  49. Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:9–10CrossRefGoogle Scholar
  50. Simintzi I, Schulpis KH, Angelogianni P, Liapi C, Tsakiris S (2007) The effect of aspartame on acetylcholinesterase activity in hippocampal homogenates of suckling rats. Pharmacol Res 56(2):155–159PubMedCrossRefGoogle Scholar
  51. Skrzydlewska E (2003) Toxicological and metabolic consequences of methanol poisoning. Toxicol Mechan Methods 13(4):277–293CrossRefGoogle Scholar
  52. Skrzydlewska E, Farbiszewski R (1997) Glutathione consumption and inactivation of glutathione-related enzymes in liver, erythrocytes and serum of rats after methanol intoxication. Arch Toxicol 71:741–745PubMedCrossRefGoogle Scholar
  53. Skrzydlewska E, Farbiszewski R (1998) Lipid peroxidation and antioxidant status in the liver, erythrocytes, and serum of rats after methanol intoxication. J Toxicol Environ Health A 53(8):637–649PubMedCrossRefGoogle Scholar
  54. Soffritti M, Belpoggi F, Degli Esposti D, Lambertini L, Tibaldi E, Rigano A (2006) First experimental demonstration of the multipotential carcinogenic effects of aspartame administered in the feed to Sprague-Dawley rats. Environ Health Perspect 114(3):379–385Google Scholar
  55. Sogut S, Songur A, Ozen OA, Ozyurt H, Sarsilmaz M (2004) Does the sub acute (4 week) exposure to formaldehyde inhalation lead to oxidant/ antioxidant imbalance in rat liver? Eur J Gen Med 1(3):26–32Google Scholar
  56. Stegink LD (1987) The aspartame story: a model for the clinical testing of a food additive. Am J Clin Nutr 46:204–215PubMedGoogle Scholar
  57. Sturgill MG, Lambert GH (1997) Xenobiotic-induced hepatotoxicity: mechanisms of liver injury and methods of monitoring hepatic function. Clin Chem 43(8 Pt 2):1512–1526PubMedGoogle Scholar
  58. Tomaro ML, Batlle AM (2002) Bilirubin: its role in cytoprotection against oxidative stress. Int J Biochem Cell Biol 34(3):216–220PubMedCrossRefGoogle Scholar
  59. Trocho C, Pardo R, Rafecas I, Virgili J, Remesar X, Fernández-López JA, Alemany M (1998) Formaldehyde derived from dietary aspartame binds to tissue components in vivo. Life Sci 63(5):337–349PubMedCrossRefGoogle Scholar
  60. Zelenka J, Muchova L, Zelenkova M, Vanova K, Vreman HJ, Wong RJ, Vitek L (2012) Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress. Biochimie 94(8):1821–1827PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • M. Abhilash
    • 1
  • Mathews V. Varghese
    • 1
  • M. V. Sauganth Paul
    • 1
  • Manju Alex
    • 1
  • R. Harikumaran Nair
    • 1
    Email author
  1. 1.School of BiosciencesMahatma Gandhi UniversityKottayamIndia

Personalised recommendations