Skip to main content
Log in

Effect of long-term intake of aspartame on serum biochemical parameters and erythrocyte oxidative stress biomarkers in rats

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Aspartame is one of the most widely used artificial sweeteners globally. Data concerning acute toxicity of aspartame is controversial, and knowledge on its chronic effect is limited. The present study evaluates the effect of long-term intake of aspartame on serum biochemical parameters and erythrocyte antioxidant defence system in rats. Male Wistar rats, weighing 150–175 g, were randomly divided into one control group and three experimental groups. The control group received only drinking water, whereas the experimental groups were orally administered with aspartame at the concentrations of 50, 500 and 1000 mg/kg b.wt respectively for 180 days. Results showed that administration of aspartame (1000 mg/kg b.wt) caused a significant increase in the levels of serum total bilirubin (P < 0.05). The activity of glutathione peroxidase and glutathione reductase was significantly reduced in the erythrocytes of rats that had received aspartame (1000 mg/kg b.wt) (P < 0.05). Glutathione was significantly decreased in 500 mg/kg (P < 0.05) and 1000 mg/kg (P < 0.001) aspartame groups. It can be concluded from these observations that long-term consumption of aspartame leads to dose-dependent increase in free radical production and produces impairment in antioxidant status in erythrocytes mainly through alterations in glutathione-dependent system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Salam OM, Salem NA, Hussein JS (2012) Effect of aspartame on oxidative stress and monoamine neurotransmitter levels in lipopolysaccharide-treated mice. Neurotox Res 21(3):245–255

    Article  CAS  PubMed  Google Scholar 

  • Abhilash M, Paul MV, Varghese MV, Nair RH (2011) Effect of long term intake of aspartame on antioxidant defense status in liver. Food Chem Toxicol 49:1203–1207

    Article  CAS  PubMed  Google Scholar 

  • Abhilash M, Paul MVS, Varghese MV, Nair RH (2013) Long term consumption of aspartame and brain antioxidant defense status. Drug Chem Toxicol 36(2):135–140

    Article  CAS  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. In: Colowick SP, Kaplan NO (ed) Methods in Enzymology, Academic Press, Florida, 105, pp 114–21

  • Alsuhaibani ES (2010) In vivo cytogenetic studies on aspartame Comp Funct Genomics. doi:10.1155/2010/605921

  • Amin KA, Hashem KS (2012) Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): antioxidant defense and role of alpha-tocopherol. BMC Vet Res 8:45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arora N, Goldhaber SZ (2006) Anticoagulants and transaminase elevation. Circulation 113(15):e698–e702

    Article  PubMed  Google Scholar 

  • Belpoggi F, Soffritti M, Padovani M, Degli Esposti D, Lauriola M, Minardi F (2006) Results of long-term carcinogenicity bio-assay on Sprague–Dawley rats exposed to aspartame administered in feed. Ann NY Acad Sci 1076:559–577

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom BP, Cummings DR, Skaggs TA (2007) Aspartame decreases evoked extracellular dopamine levels in the rat brain: an in vivo voltammetry study. Neuropharmacol 53(8):967–974

    Article  CAS  Google Scholar 

  • Beuge JA, Aust SD (1978) The thiobarbituric acid assay. Methods Enzymol 52:306–307

    Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  • Brigelius-Flohe R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830(5):3289–3303

    Article  CAS  PubMed  Google Scholar 

  • Burtis CA, Ashwood ER, Aldrich JE (1996) Tietz fundamentals of clinical chemistry. WB Saunders, Philadelphia

    Google Scholar 

  • Christian B, McConnaughey K, Bethea E, Coffey A, Hammond L, Harrell S, Metcalf K, Muehlenbein D, Spruill W, Brinson L, McConnaughey M (2004) Chronic aspartame affects T-maze performance, brain cholinergic receptors and Na+ K+-ATPase in rats. Pharmacol Biochem Behav 78:121–127

    Article  CAS  PubMed  Google Scholar 

  • Clemens MR, Waller HD (1987) Lipid peroxidation in erythrocytes. Chem Phys Lipids 45:251–268

    Article  CAS  PubMed  Google Scholar 

  • Davutoglu M, Guler E, Olgar S, Kurutas EB, Karabiber H, Garipardic M, Ekerbicer HC (2008) Oxidative stress and antioxidant status in neonatal hyperbilirubinemia. Saudi Med J 29(12):1743–1748

    PubMed  Google Scholar 

  • Diomede L, Romano M, Guiso G, Caccia S, Nava S, Salmona M (1991) Interspecies and interstrain studies on the increased susceptibility to metrazol-induced convulsions in animals given aspartame. Food Chem Toxicol 29:101–106

    Article  CAS  PubMed  Google Scholar 

  • Drabkin DL, Austin JM (1932) Spectrophotometric constants for common hemoglobin derivatives in human, dog and rabbit blood. J Biol Chem 98:719–733

    CAS  Google Scholar 

  • Fanouraki E, Divanach P, Pavlidis M (2007) Baseline values for acute and chronic stress indicators in sexually indicators in sexually immature red porgy (Pagrus pagrus). Aquaculture 265:294–304

    Article  CAS  Google Scholar 

  • FDA (Food and Drug Administration) (1996) Fed Reg 61:33654–33656

    Google Scholar 

  • Friedman LS, Martin P, Muooz SJ (1996) Liver function tests and the objective evaluation of the patient with liver disease. In: Hepatology: A Textbook of Liver Disease. 3rd edn (vol.I), WB Saunders Co, Philadelphia, pp 791–833

  • Gebicki S, Gebicki JM (1993) Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem J 289:743–749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldberg MD, Spooner JR (1983) Glutathione reductase. In: Bergmayer HU, Bergmayer J, Grabi M (eds) Methods of enzymatic analysis, vol III, 3rd edn. Florida, Academic Press Inc, pp 258–265

    Google Scholar 

  • Gombos K, Varjas T, Orsos Z, Polyak E, Peredi J, Varga Z, Nowrasteh G, Tettinger A, Mucsi G, Ember I (2007) The effect of aspartame administration on oncogene and suppressor gene expressions. Vivo 21(1):89–92

    CAS  Google Scholar 

  • Harris C, Dixon M, Hansen JM (2004) Glutathione depletion modulates methanol, formaldehyde and formate toxicity in cultured rat conceptuses. Cell Biol Toxicol 20(3):133–145

    Article  CAS  PubMed  Google Scholar 

  • Hawk PB (1965) Determination of serum sodium and potassium by using flame photometer. In: Hawk’s Physiology Chemistry, 14th edn. Mc Graw-Hill Book Co, New York

  • Ilback NG, Alzin M, Jahrl S, Henghardt-Barbieri H, Busk L (2003) Estimated intake of the artificial sweeteners acesulfame-K, aspartame, cyclamate and saccharin in a group of Swedish diabetics. Food Addit Contam 20:99–114

    Article  PubMed  Google Scholar 

  • Iman MM (2011) Effect of aspartame on some oxidative stress parameters in liver and kidney of rats. African J Pharm Pharmacol 5(6):678–682

    Article  Google Scholar 

  • Iyaswamy A, Rathinasamy S (2014) Biochemical responses and mitochondrial mediated activation of apoptosis on long-term effect of aspartame in rat brain. Redox Biol 2:820–831

    Article  Google Scholar 

  • Iyyaswamy A, Rathinasamy S (2012) Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats. J Biosci 37(4):679–688

    Article  CAS  PubMed  Google Scholar 

  • Johlin FC, Fortman CS, Nghiem DD, Tephly TR (1987) Studies on the role of folic acid and folate-dependent enzymes in human methanol poisoning. Mol Pharmacol 31(5):557–561

    CAS  PubMed  Google Scholar 

  • Jones DP, Go YM (2011) Mapping the cysteine proteome: analysis of redox-sensing thiols. Curr Opin Chem Biol 15:103–112

    Article  CAS  PubMed  Google Scholar 

  • Kadiiska MB, Mason RP (2000) Acute methanol intoxication generates free radicals in rats: an ESR spin trapping investigation. Free Radic Biol Med 28(7):1106–1114

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Seo J, Cho KH (2011) Aspartame-fed zebrafish exhibit acute deaths with swimming defects and saccharin-fed zebrafish have elevation of cholesteryl ester transfer protein activity in hypercholesterolemia. Food Chem Toxicol 49(11):2899–2905

    Article  CAS  PubMed  Google Scholar 

  • Kruse JA (1992) Methanol poisoning. Intensive Care Med 18(7):391–397

    Article  CAS  PubMed  Google Scholar 

  • Leme FAGL, Azoubel R (2006) Effects of aspartame on the exocrine pancreas of rat fetuses. Int J Morphol 24(4):679–684

    Article  Google Scholar 

  • Mattes RD, Popkin BM (2009) Nonnutritive sweetener consumption in humans: effects on appetite and food intake and their putative mechanisms. Am J Clin Nutr 89(1):1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mireles LC, Lum MA, Dennery PA (1999) Antioxidant and cytotoxic effects of bilirubin on neonatal erythrocytes. Pediatr Res 45:355–362

    Article  CAS  PubMed  Google Scholar 

  • Muchova L, Vanova K, Zelenka J, Lenicek M, Petr T, Vejrazka M, Sticova E, Vreman HJ, Wong RJ, Vitek L (2011) Bile acids decrease intracellular bilirubin levels in the cholestatic liver: implications for bile acid-mediated oxidative stress. J Cell Mol Med 15(5):1156–1165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen UN, Dumoulin G, Henriet MT, Regnard J (1998) Aspartame ingestion increases urinary calcium, but not oxalate excretion, in healthy subjects. J Clin Endocrino Metabol 83:165–168

    Article  CAS  Google Scholar 

  • Osfor MMH, Elias TR (2003) Nutritional and biochemical studies on some artificial sweeteners administered to male albino rats. Bull of the National Res Centre (Cairo) 28:377–401

    CAS  Google Scholar 

  • Oyama Y, Sakai H, Arata T, Okano Y, Akaike N, Sakai K (2002) Cytotoxic effects of methanol, formaldehyde, and formate on dissociated rat thymocytes: a possibility of aspartame toxicity. Cell Biol Toxicol 18(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  PubMed  Google Scholar 

  • Paoletti F, Aldinucci D, Mocali A, Caparrini A (1986) A sensitive spectrophotometric method for the determination of the superoxide dismutase activity in tissue extract. J Biochem 154:536–541

    CAS  Google Scholar 

  • Prabhakar R, Vreven T, Morokuma K, Musaev DG (2005) Elucidation of the mechanism of selenoprotein glutathione peroxidase (GPx) catalyzed hydrogen peroxide reduction by two glutathione molecules: a density functional study. Biochemistry 44:11864–11871

    Article  CAS  PubMed  Google Scholar 

  • Ranney RE, Oppermann JA, Muldoon E, McMahon FG (1976) Comparative metabolism of aspartame in experimental animals and humans. J Toxicol Environ Health 2(2):441–451

  • Reiter RJ (2000) Melatonin: lowering the high price of free radicals. News Physiol Sci 15(5):246–250

    CAS  PubMed  Google Scholar 

  • Rencuzogullari E, Tuylu BA, Topaktas M, Ila HB, Kayraldiz A, Arslan M, Diler SB (2004) Genotoxicity of aspartame. Drug Chem Toxicol 27:257–268

    Article  PubMed  Google Scholar 

  • Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:9–10

    Article  Google Scholar 

  • Simintzi I, Schulpis KH, Angelogianni P, Liapi C, Tsakiris S (2007) The effect of aspartame on acetylcholinesterase activity in hippocampal homogenates of suckling rats. Pharmacol Res 56(2):155–159

    Article  CAS  PubMed  Google Scholar 

  • Skrzydlewska E (2003) Toxicological and metabolic consequences of methanol poisoning. Toxicol Mechan Methods 13(4):277–293

    Article  CAS  Google Scholar 

  • Skrzydlewska E, Farbiszewski R (1997) Glutathione consumption and inactivation of glutathione-related enzymes in liver, erythrocytes and serum of rats after methanol intoxication. Arch Toxicol 71:741–745

    Article  CAS  PubMed  Google Scholar 

  • Skrzydlewska E, Farbiszewski R (1998) Lipid peroxidation and antioxidant status in the liver, erythrocytes, and serum of rats after methanol intoxication. J Toxicol Environ Health A 53(8):637–649

    Article  CAS  PubMed  Google Scholar 

  • Soffritti M, Belpoggi F, Degli Esposti D, Lambertini L, Tibaldi E, Rigano A (2006) First experimental demonstration of the multipotential carcinogenic effects of aspartame administered in the feed to Sprague-Dawley rats. Environ Health Perspect 114(3):379–385

  • Sogut S, Songur A, Ozen OA, Ozyurt H, Sarsilmaz M (2004) Does the sub acute (4 week) exposure to formaldehyde inhalation lead to oxidant/ antioxidant imbalance in rat liver? Eur J Gen Med 1(3):26–32

    CAS  Google Scholar 

  • Stegink LD (1987) The aspartame story: a model for the clinical testing of a food additive. Am J Clin Nutr 46:204–215

    CAS  PubMed  Google Scholar 

  • Sturgill MG, Lambert GH (1997) Xenobiotic-induced hepatotoxicity: mechanisms of liver injury and methods of monitoring hepatic function. Clin Chem 43(8 Pt 2):1512–1526

    CAS  PubMed  Google Scholar 

  • Tomaro ML, Batlle AM (2002) Bilirubin: its role in cytoprotection against oxidative stress. Int J Biochem Cell Biol 34(3):216–220

    Article  CAS  PubMed  Google Scholar 

  • Trocho C, Pardo R, Rafecas I, Virgili J, Remesar X, Fernández-López JA, Alemany M (1998) Formaldehyde derived from dietary aspartame binds to tissue components in vivo. Life Sci 63(5):337–349

    Article  CAS  PubMed  Google Scholar 

  • Zelenka J, Muchova L, Zelenkova M, Vanova K, Vreman HJ, Wong RJ, Vitek L (2012) Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress. Biochimie 94(8):1821–1827

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Harikumaran Nair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhilash, M., Varghese, M.V., Paul, M.V.S. et al. Effect of long-term intake of aspartame on serum biochemical parameters and erythrocyte oxidative stress biomarkers in rats. Comp Clin Pathol 24, 927–933 (2015). https://doi.org/10.1007/s00580-014-2013-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-014-2013-8

Keywords

Navigation