Comparative Clinical Pathology

, Volume 24, Issue 2, pp 343–358 | Cite as

Effect of adipose tissue-derived mesenchymal stem cell treatment on oxidative stress and inflammatory response following Escherichia coli lipopolysaccharide

  • Omar M. E. Abdel-Salam
  • Eman R. Youness
  • Enayat A. Omara
  • Amany A. Sleem
Original Article


Stem cells are the focus of extensive experimental and clinical research with the aim of replacing lost or damaged tissues. This paper studies the effect of systemic stem cell injections on the redox status of the brain and liver in a model of systemic inflammatory illness. Mice were treated with intraperitoneal (i.p.) injection of adipose tissue-derived mesenchymal stem cell (AT-MSCs) suspension, or saline at time of lipopolysaccharide (LPS; 200 mg/kg, i.p.) administration and euthanized 4 h later. Results show that the administration of LPS increased the oxidative stress in the brain and liver tissues. Malondialdehyde (MDA) increased by 53 and 68.9 %, reduced glutathione (GSH) decreased by 44.4 and 50.6 %, and nitric oxide increased by 47.7 and 87.2 % in the brain and liver, respectively. Total antioxidant capacity (TAC) decreased by 37.8 and 76.2 %, catalase activity decreased by 58.2 and 29.2 %, and paraoxonase 1 (PON1) activity decreased by 53.1 and 22.5 % in the brain and liver, respectively. In addition, nuclear factor kappa B (NF-κB) and the monocyte chemoattractant protein-1 (MCP-1) increased in the brain and liver, respectively, after endotoxin injection. Mice treated with AT-MSCs showed unchanged MDA, increased brain GSH (45.5 %), TAC (171.1 %), catalase activity (58.4 %), and PON1 activity (110.4 %). In the liver, MDA and catalase activity were unchanged, but TAC decreased by −36.7 % and PON1 activity decreased by −22.8 %. NF-κB decreased in the liver, while MCP-1 decreased in the brain and liver by AT-MSCs treatment. AT-MSCs reduced inflammatory cell infiltration and necrotic damage in the liver and markedly decreased the number of degenerated neurons in the cortex and striatum in LPS-treated mice. Stem cell treatment was associated with lower tumor necrosis factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS), and caspase-3 immunoreactivity in the brain (cortex and striatum) and liver tissues compared to that in the LPS control group. Thus, the systemic administration of AT-MSCs suspension in a model of mild systemic illness modulates the cellular oxidative response and exerts anti-inflammatory effect. AT-MSCs prevent tissue injury via decreased nitric oxide generation due to iNOS expression and decreased activation of caspase-3, TNF-α, and MCP-1.


Adipose tissue mesenchymal stem cells Oxidative stress Systemic inflammation 


Conflict of interest



  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefPubMedGoogle Scholar
  2. Akahane K, Okamoto K, Kikuchi M, Todoroki H, Higure A, Ohuchida T, Kitahara K, Takeda S, Itoh H, Ohsato K (2001) Inhibition of factor Xa suppresses the expression of tissue factor in human monocytes and lipopolysaccharide-induced endotoxemia in rats. Surgery 130:809–818CrossRefPubMedGoogle Scholar
  3. Aleksandrova MA, Poltavtseva RA, Revishchin AV, Korochkin LI, Sukhikh GT (2004) Development of neural stem/progenitor cells from human brain by transplantation into the brains of adult rats. Neurosci Behav Physiol 34:659–662CrossRefPubMedGoogle Scholar
  4. Andjelkovic AV, Kerkovich D, Pachter JS (2000) Monocyte:astrocyte interactions regulate MCP-1 expression in both cell types. J Leukoc Biol 68:545–552PubMedGoogle Scholar
  5. Andrews EM, Tsai SY, Johnson SC, Farrer JR, Wagner JP, Kopen GC, Kartje GL (2008) Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat. Exp Neurol 211:588–592CrossRefPubMedCentralPubMedGoogle Scholar
  6. Bacigaluppi M, Pluchino S, Jametti LP, Kilic E, Kilic U, Salani G, Brambilla E, West MJ, Comi G, Martino G, Hermann DM (2009) Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain 132:2239–2251CrossRefPubMedGoogle Scholar
  7. Bal-Price A, Brown GC (2000) Nitric-oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria. J Neurochem 75:1455–1464CrossRefPubMedGoogle Scholar
  8. Bantel H, Lügering A, Poremba C, Lügering N, Held J, Domschke W, Schulze-Osthoff K (2001) Caspase activation correlates with the degree of inflammatory liver injury in chronic hepatitis C virus infection. Hepatology 34(4 Pt 1):758–767CrossRefPubMedGoogle Scholar
  9. Beurel E, Jope RS (2009) Lipopolysaccharide-induced interleukin-6 production is controlled by glycogen synthase kinase-3 and STAT3 in the brain. J Neuroinflammation 6:9CrossRefPubMedCentralPubMedGoogle Scholar
  10. Blackwell TS, Christman JW (1997) The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol 17:3–9CrossRefPubMedGoogle Scholar
  11. Blau HM, Brazelton TR, Weimann JM (2001) The evolving concept of a stem cell: entity or function? Cell 105:829–841CrossRefPubMedGoogle Scholar
  12. Buja LM, Vela D (2010) Immunologic and inflammatory reactions to exogenous stem cells implications for experimental studies and clinical trials for myocardial repair. J Am Coll Cardiol 56:1693–1700CrossRefPubMedGoogle Scholar
  13. Cao C, Matsumura K, Yamagata K, Watanabe Y (1995) Induction by lipopolysaccharide of cyclooxygenase-2 mRNA in rat brain; its possible role in the febrile response. Brain Res 697:187–196CrossRefPubMedGoogle Scholar
  14. Chen F, Castranova V, Shi X, Demers LM (1999) New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem 45:7–17PubMedGoogle Scholar
  15. Crowley LV (1967) The Reitman-Frankel colorimetric transaminase procedure in suspected myocardial infarction. Clin Chem 13:482–487PubMedGoogle Scholar
  16. Czaja MJ, Geerts A, Xu J, Schmiedeberg P, Ju Y (1994) Monocyte chemoattractant protein 1 (MCP-1) expression occurs in toxic rat liver injury and human liver disease. J Leukoc Biol 55:120–126PubMedGoogle Scholar
  17. Czapski GA, Cakala M, Chalimoniuk M, Gajkowska B, Strosznajder JB (2007) Role of nitric oxide in the brain during lipopolysaccharide-evoked systemic inflammation. J Neurosci Res 85:1694–1703CrossRefPubMedGoogle Scholar
  18. Dawson TM, Dawson VL (2002) Neuroprotective and neurorestorative strategies for Parkinson’s disease. Nat Neurosci 5(Suppl):1058–1061CrossRefPubMedGoogle Scholar
  19. de Wert G, Mummery C (2003) Human embryonic stem cells: research, ethics and policy. Hum Reprod 18:672–682CrossRefPubMedGoogle Scholar
  20. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313–326CrossRefPubMedCentralPubMedGoogle Scholar
  21. Einstein O, Fainstein N, Vaknin I, Mizrachi-Kol R, Reihartz E, Grigoriadis N, Lavon I, Baniyash M, Lassmann H, Ben-Hur T (2007) Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann Neurol 61:209–218CrossRefPubMedGoogle Scholar
  22. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem 82:70–77CrossRefPubMedGoogle Scholar
  23. Furlong CE, Suzuki SM, Stevens RC, Marsillach J, Richter RJ, Jarvik GP, Checkoway H, Samii A, Costa LG, Griffith A, Roberts JW, Yearout D, Zabetian CP (2010) Human PON1, a biomarker of risk of disease and exposure. Chem Biol Interact 187:355–361CrossRefPubMedCentralPubMedGoogle Scholar
  24. Gill R, Soriano M, Blomgren K, Hagberg H, Wybrecht R, Miss MT, Hoefer S, Adam G, Niederhauser O, Kemp JA, Loetscher H (2002) Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain. J Cereb Blood Flow Metab 22:420–430CrossRefPubMedGoogle Scholar
  25. Glabinski AR, Balasingam V, Tani M, Kunkel SL, Strieter RM, Wee Yong V, Ransohoff RM (1996) Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J Immunol 156:4363–4368PubMedGoogle Scholar
  26. Grisham MB, Jourd’Heuil D, Wink DA (1999) Nitric oxide. I. Physiological chemistry of nitric oxide and its metabolites: implications in inflammation. Am J Physiol 276:G315–G321PubMedGoogle Scholar
  27. Gutteridge JMC (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828PubMedGoogle Scholar
  28. Guzman R, Uchida N, Bliss TM, He D, Christopherson KK, Stellwagen D, Capela A, Greve J, Malenka RC, Moseley ME, Palmer TD, Steinberg GK (2007) Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci U S A 104:10211–10216CrossRefPubMedCentralPubMedGoogle Scholar
  29. Heng BC, Cao T, Haider HK, Wang DZ, Sim EK, Ng SC (2004) An overview and synopsis of techniques for directing stem cell differentiation in vitro. Cell Tissue Res 315:291–303CrossRefPubMedGoogle Scholar
  30. Higashino K, Takahashi Y, Yamamura Y (1972) Release of phenyl acetate esterase from liver microsomes by carbon tetrachloride. Clin Chim Acta 41:313–320CrossRefPubMedGoogle Scholar
  31. Hollis JH, Lemus M, Evetts MJ, Oldfield BJ (2010) Central interleukin-10 attenuates lipopolysaccharide-induced changes in food intake, energy expenditure and hypothalamic Fos expression. Neuropharmacology 58:730–738CrossRefPubMedGoogle Scholar
  32. Hua XY, Chen P, Fox A, Myers RR (1996) Involvement of cytokines in lipopolysaccharide-induced facilitation of CGRP release from capsaicin-sensitive nerves in the trachea: studies with interleukin-1beta and tumor necrosis factor-alpha. J Neurosci 16:4742–4748PubMedGoogle Scholar
  33. Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM (2001) Absence of monocyte chemoattractant protein-1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 193:713–726CrossRefPubMedCentralPubMedGoogle Scholar
  34. Irons H, Lind JG, Wakade CG, Yu G, Hadman M, Carroll J, Hess DC, Borlongan CV (2004) Intracerebral xenotransplantation of GFP mouse bone marrow stromal cells in intact and stroke rat brain: graft survival and immunologic response. Cell Transplant 13:283–294CrossRefPubMedGoogle Scholar
  35. Jacewicz M, Czapski GA, Katkowska I, Strosznajder RP (2009) Systemic administration of lipopolysaccharide impairs glutathione redox state and object recognition in male mice. The effect of PARP-1 inhibitor. Folia Neuropathol 47:321–328PubMedGoogle Scholar
  36. Jayakumar AR, Bethea JR, Tong XY, Gomez J, Norenberg MD (2011) NF-κB in the mechanism of brain edema in acute liver failure: studies in transgenic mice. Neurobiol Dis 41:498–507CrossRefPubMedCentralPubMedGoogle Scholar
  37. Jeong H-K, Jou I, Joe EH (2010) Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantia nigra. Exp Mol Med 42:823–832CrossRefPubMedCentralPubMedGoogle Scholar
  38. Karin M, Delhase M (2000) The I kappaB kinase (IKK) and NF-kappaB: key elements of proinflammatory signaling. Semin Immunol 12:85–98CrossRefPubMedGoogle Scholar
  39. Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A, Ludlow JW, Stricker DM, Potiny S, Green P, Halvorsen YD, Cheatham B, Storms RW, Gimble JM (2007) Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol 212:702–709CrossRefPubMedGoogle Scholar
  40. Kim JS, Gautam SC, Chopp M, Zaloga C, Jones ML, Ward PA, Welch KM (1995) Expression of monocyte chemoattractant protein-1 and macrophage inflammatory protein-1 after focal cerebral ischemia in the rat. J Neuroimmunol 56:127–134CrossRefPubMedGoogle Scholar
  41. Kolios G, Valatas V, Manousou P, Xidakis C, Notas G, Kouroumalis E (2008) Nitric oxide and MCP-1 regulation in LPS activated rat Kupffer cells. Mol Cell Biochem 319:91–98CrossRefPubMedGoogle Scholar
  42. Koo JW, Russo SJ, Ferguson D, Nestler EJ, Duman RS (2010) Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci U S A 107:2669–2674CrossRefPubMedCentralPubMedGoogle Scholar
  43. Koracevic D, Koracevic G, Djordjevic V (2001) Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 54:356–361CrossRefPubMedCentralPubMedGoogle Scholar
  44. Kratsovnik E, Bromberg Y, Sperling O, Zoref-Shani E (2005) Oxidative stress activates transcription factor NF-kB-mediated protective signaling in primary rat neuronal cultures. J Mol Neurosci 26:27–32CrossRefPubMedGoogle Scholar
  45. Lee ST, Chu K, Park JE, Lee K, Kang L, Kim SU, Kim M (2005) Intravenous administration of human neural stem cells induces functional recovery in Huntington’s disease rat model. Neurosci Res 52:243–249CrossRefPubMedGoogle Scholar
  46. Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH, Ko Y, Jeong SW, Kim SU (2007) Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 25:1204–1212CrossRefPubMedGoogle Scholar
  47. Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, Hong NH, Kim JH, Ban JJ, Park HK, Kim SU, Park CG, Lee SK, Kim M, Roh JK (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131:616–629CrossRefPubMedGoogle Scholar
  48. Li N, Karin M (1999) Is NF-kB the sensor of oxidative stress? FASEB J 13:1137–1143PubMedGoogle Scholar
  49. Luedde T, Beraza N, Trautwein C (2006) Evaluation of the role of nuclear factor-kappaB signaling in liver injury using genetic animal models. J Gastroenterol Hepatol 21(Suppl 3):S43–S46CrossRefPubMedGoogle Scholar
  50. Mackness B, Quarck R, Verreth W, Mackness M, Holvoet P (2006) Human paraoxonase-1 overexpression inhibits atherosclerosis in a mouse model of metabolic syndrome. Arterioscler Thromb Vasc Biol 26:1545–1550CrossRefPubMedGoogle Scholar
  51. Mahmood A, Lu D, Chopp M (2004) Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma 21:33–39CrossRefPubMedGoogle Scholar
  52. Mandrekar P, Ambade A, Lim A, Szabo G, Catalano D (2011) An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice. Hepatology 54:2185–2197CrossRefPubMedCentralPubMedGoogle Scholar
  53. Martin-Sanz P, Hortelano S, Callejas NA, Goren N, Casado M, Zeini N, Boscá L (2002) Nitric oxide in liver inflammation and regeneration. Metab Brain Dis 17(4):325–334CrossRefPubMedGoogle Scholar
  54. May MJ, Ghosh S (1998) Signal transduction through NF-kB. Immunol Today 19:80–88CrossRefPubMedGoogle Scholar
  55. Mei SH, Haitsma JJ, Dos Santos CC, Deng Y, Lai PF, Slutsky AS, Liles WC, Stewart DJ (2010) Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 182:1047–1057CrossRefPubMedGoogle Scholar
  56. Miller MD, Krangel MS (1992) Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines. Crit Rev Immunol 12:17–46PubMedGoogle Scholar
  57. Moshage H, Kok B, Huizenga JR (1995) Nitrite and nitrate determination in plasma: a critical evaluation. Clin Chem 41:892–896PubMedGoogle Scholar
  58. Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49CrossRefPubMedCentralPubMedGoogle Scholar
  59. Noble F, Rubira E, Boulanouar M, Palmier B, Plotkine M, Warnet JM, Marchand-Leroux C, Massicot F (2007) Acute systemic inflammation induces central mitochondrial damage and amnesic deficit in adult Swiss mice. Neurosci Lett 424:106–110CrossRefPubMedGoogle Scholar
  60. Peterson KE, Errett JS, Wei T, Dimcheff DE, Ransohoff R, Kuziel WA, Evans L, Chesebro B (2004) MCP-1 and CCR2 contribute to non-lymphocyte-mediated brain disease induced by Fr98 polytropic retrovirus infection in mice: role for astrocytes in retroviral neuropathogenesis. J Virol 78:6449–6458CrossRefPubMedCentralPubMedGoogle Scholar
  61. Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104CrossRefPubMedGoogle Scholar
  62. Primo-Parmo SL, Sorenson RC, Teiber J, La Du BN (1996) The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics 33:498–507CrossRefPubMedGoogle Scholar
  63. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462CrossRefPubMedCentralPubMedGoogle Scholar
  64. Ramsay MAE (2002) Will stem cells transform medicine? Proc (Bayl Univ Med Cent) 15:135–137Google Scholar
  65. Ruiz-Larrea MB, Leal AM, Liza M, Lacort M, de Groot H (1994) Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids 59:383–388CrossRefPubMedGoogle Scholar
  66. Sass G, Heinlein S, Agli A, Bang R, Schümann J, Tiegs G (2002) Cytokine expression in three mouse models of experimental hepatitis. Cytokine 19:115–120CrossRefPubMedGoogle Scholar
  67. Schwabe RF, Brenner DA (2006) Mechanisms of liver injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol 290:G583–G589CrossRefPubMedGoogle Scholar
  68. Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC (2010) Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2−/− mice. J Cereb Blood Flow Metab 30:769–782CrossRefPubMedCentralPubMedGoogle Scholar
  69. Suetsugu H, Iimuro Y, Uehara T, Nishio T, Harada N, Yoshida M, Hatano E, Son G, Fujimoto J, Yamaoka Y (2005) Nuclear factor κB inactivation in the rat liver ameliorates short term total warm ischaemia/reperfusion injury. Gut 54:835–842CrossRefPubMedCentralPubMedGoogle Scholar
  70. Sun CK, Yen CH, Lin YC, Tsai TH, Chang LT, Kao YH, Chua S, Fu M, Ko SF, Leu S, Yip HK (2011) Autologous transplantation of adipose-derived mesenchymal stem cells markedly reduced acute ischemia-reperfusion lung injury in a rodent model. J Transl Med 9:118CrossRefPubMedCentralPubMedGoogle Scholar
  71. Takeuchi H, Natsume A, Wakabayashi T, Aoshima C, Shimato S, Ito M, Ishii J, Maeda Y, Hara M, Kim SU, Yoshida J (2007) Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett 426:69–74CrossRefPubMedGoogle Scholar
  72. Thompson WL, Karpus WJ, Van Eldik LJ (2008) MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult. J Neuroinflammation 5:35CrossRefPubMedCentralPubMedGoogle Scholar
  73. Tomiyama K, Murase N, Stolz DB, Toyokawa H, O’Donnell DR, Smith DM, Dudas JR, Rubin JP, Marra KG (2008) Characterization of transplanted GFP+ bone marrow cells into adipose tissue. Stem Cells 26:330–338CrossRefPubMedCentralPubMedGoogle Scholar
  74. Tuaillon N, Shen DF, Berger RB, Lu B, Rollins BJ, Chan CC (2002) MCP-1 expression in endotoxin-induced uveitis. Invest Ophthalmol Vis Sci 43:1493–1498PubMedGoogle Scholar
  75. Turrin NP, Gayle D, Ilyin SE, Flynn MC, Langhans W, Schwartz GJ, Plata-Salamán CR (2001) Pro-inflammatory and anti-inflammatory cytokine mRNA induction in the periphery and brain following intraperitoneal administration of bacterial lipopolysaccharide. Brain Res Bull 54:443–453CrossRefPubMedGoogle Scholar
  76. Tweedie D, Sambamurti K, Greig NH (2007) Review TNF-alpha inhibition as a treatment strategy for neurodegenerative disorders: new drug candidates and targets. Curr Alzheimer Res 4:378–385CrossRefPubMedGoogle Scholar
  77. Uccelli A, Milanese M, Principato MC, Morando S, Bonifacino T, Vergani L, Giunti D, Voci A, Carminati E, Giribaldi F, Caponnetto C, Bonanno G (2012) Intravenous mesenchymal stem cells improve survival and motor function in experimental amyotrophic lateral sclerosis. Mol Med 18:794–804CrossRefPubMedCentralPubMedGoogle Scholar
  78. Valatas V, Kolios G, Manousou P, Notas G, Xidakis C, Diamantis I, Kouroumalis E (2004) Octreotide regulates CC but not CXC LPS-induced chemokine secretion in rat Kupffer cells. Br J Pharmacol 141:477–487CrossRefPubMedCentralPubMedGoogle Scholar
  79. Wang X, Quinn PJ (2010) Endotoxins: lipopolysaccharides of gram-negative bacteria. Subcell Biochem 53:3–25CrossRefPubMedGoogle Scholar
  80. Wang L, Li Y, Chen X, Chen J, Gautam SC, Xu Y, Chopp M (2002) MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 7:113–7Google Scholar
  81. Wang H, Wu YB, Du XH (2005) Effect of dexamethasone on nitric oxide synthase and caspase-3 gene expressions in endotoxemia in neonate rat brain. Biomed Environ Sci 18:181–186PubMedGoogle Scholar
  82. Wang Q, Matsumoto Y, Shindo T, Miyake K, Shindo A, Kawanishi M, Kawai N, Tamiya T, Nagao S (2006) Neural stem cells transplantation in cortex in a mouse model of Alzheimer’s disease. J Med Investig 53:61–69CrossRefGoogle Scholar
  83. Wang F, Yasuhara T, Shingo T, Kameda M, Tajiri N, Yuan WJ, Kondo A, Kadota T, Baba T, Tayra JT, Kikuchi Y, Miyoshi Y, Date I (2010) Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: focusing on neuroprotective effects of stromal cell-derived factor-1alpha. BMC Neurosci 11:52CrossRefPubMedCentralPubMedGoogle Scholar
  84. Wang B, Wu SM, Wang T, Liu K, Zhang G, Zhang XQ, Yu JH, Liu CZ, Fang CC (2012) Pre-treatment with bone marrow-derived mesenchymal stem cells inhibits systemic intravascular coagulation and attenuates organ dysfunction in lipopolysaccharide-induced disseminated intravascular coagulation rat model. Chin Med J (Engl) 125:1753–1759Google Scholar
  85. Watson AD, Berliner JA, Hama SY, La Du BN, Faull KF, Fogelman AM, Navab M (1995) Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Invest 96:2882–2891CrossRefPubMedCentralPubMedGoogle Scholar
  86. Weil BR, Herrmann JL, Abarbanell AM, Manukyan MC, Poynter JA, Meldrum DR (2011) Intravenous infusion of mesenchymal stem cells is associated with improved myocardial function during endotoxemia. Shock 36:235–241CrossRefPubMedGoogle Scholar
  87. Wen-Hui J, Ai-Qun MA, Yan-Min Z, Ke H, Yu L, Zeng-Tie Z, Ting-Zhong W, Xin H, Xiao-Pu Z (2005) Migration of intravenously grafted mesenchymal stem cells to injured heart in rats. Acta Physiol Sin 57:566–572Google Scholar
  88. Yagi H, Soto-Gutierrez A, Navarro-Alvarez N, Nahmias Y, Goldwasser Y, Kitagawa Y, Tilles AW, Tompkins RG, Parekkadan B, Yarmush ML (2010) Reactive bone marrow stromal cells attenuate systemic inflammation via sTNFR1. Mol Ther 18:1857–1864CrossRefPubMedCentralPubMedGoogle Scholar
  89. Zhang H, Fang J, Su H, Yang M, Lai W, Mai Y, Wu Y (2012) Bone marrow mesenchymal stem cells attenuate lung inflammation of hyperoxic newborn rats. Pediatr Transplant 16:589–598CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Omar M. E. Abdel-Salam
    • 1
  • Eman R. Youness
    • 2
  • Enayat A. Omara
    • 3
  • Amany A. Sleem
    • 4
  1. 1.Department of Toxicology and NarcoticsNational Research CentreCairoEgypt
  2. 2.Department of Medical BiochemistryNational Research CentreCairoEgypt
  3. 3.Department of PathologyNational Research CentreCairoEgypt
  4. 4.Department of PharmacologyNational Research CentreCairoEgypt

Personalised recommendations