Comparative Clinical Pathology

, Volume 24, Issue 1, pp 169–175 | Cite as

Hematological parameters and nuclear abnormalities in peripheral erythrocytes of Achirus lineatus (Pleuronectiformes: Achiridae)

  • Lílian R. G. B. Prado
  • Cristiane Felix
  • Denis M. S. Abessa
  • Lucas M. Buruaem
  • Laís D. Abujamara
  • Aline A. Kirschbaum
  • Gabriela C. R. Turatti
  • Maria J. T. Ranzani-Paiva
  • Aristides T. Correia
  • Robson SerianiEmail author
Brief Communication


Hematological parameter of demersal fish constitutes important measures of biological effects of seasonality and contaminants in sediments. We aimed to assess the hematological parameters and nuclear abnormalities, including micronuclei levels, in peripheral erythrocytes of flatfish Achirus lineatus collected in São Vicente Estuary in summer and winter. The number of lymphocytes was significantly higher in summer, whereas the number of neutrophils was significantly higher in winter. For other measured parameters, no significant differences were observed in spite of the levels of erythroblasts, leukocytes, thrombocytes, micronuclei and nuclear abnormality tended to be slightly higher in winter. Integrated analysis of data suggests that genotoxicity may be related to immunosuppression, although some types of leukocytes appear to act removing anomalous cells. Considering the contamination status of the Santos–São Vicente Estuarine system, the results provide an important contribution to knowledge of the hematological aspects of A.lineatus and its potential use as a bioindicator for monitoring estuarine sites.


Flatfish Hematology Biomarkers Seasonality Estuary 



The authors gratefully acknowledge Mr. Ricardo for his assistance with the fish sampling. L.M. Buruaem (PhD grant 142002/2010-0) and D.M.S. Abessa (552299/2010-3) were sponsored by CNPq.


  1. Abessa DMS, Carr RS, Sousa ECPM, Rachid BRF, Zaroni LP, Pinto YA, Gasparro MR, Bícego MC, Hortellani MA, Sarkis JES, Muniz P (2008) Integrative ecotoxicological assessment of a complex tropical estuarine system. In: Hoffer TN (ed) Marine pollution: new research. Nova Science, New York, pp 125–159Google Scholar
  2. Adamante WB, Nuñer APO, Barcellos LJG, Soso AB, Finco JA (2008) Stress in Salminus brasiliensis fingerlings due to different densities and times of transportation. Arq Bras Med Vet Zootec 60(3):755–761CrossRefGoogle Scholar
  3. Ainsworth AJ, Dexiang C, Waterstratt PR, Greenway T (1991) Effect of temperature on the immune system of channel catfish (Ictalurus punctatus). I. Leukocyte distribution and phagocyte function in the anterior kidney at 10 °C. Comp Bioch Physiol 100A:907–912CrossRefGoogle Scholar
  4. Al-Sabti K, Metcalfe CD (1995) Fish micronuclei for assessing genotoxicity in water. Mutat Res 343:121–135PubMedCrossRefGoogle Scholar
  5. Azevedo JS, Braga ESG (2011) Caracterização hidroquímica para qualificação ambiental dos estuários de Santos–São Vicente e Cananéia. Arq Ciênc Mar 44:1–10Google Scholar
  6. Azevedo JS, Sarkis JES, Oliveira T, Urich J (2012) Tissue-specific mercury concentrations in two catfish species from the Brazilian Coast. Braz J Oceanogr 60(2):209–217CrossRefGoogle Scholar
  7. Belpaeme K, Cooreman K, Kirsch-Volders M (1998) Development and validation of the in vivo alkaline comet assay for detecting genomic damage in marine flatfish. Mutat Res 415(3):167–184PubMedCrossRefGoogle Scholar
  8. Bícego MC, Taniguchi S, Yogui GT, Montone RC, Silva DAM, Lourenço RA, Martins CC, Sasaki ST, Pellizari VH, Weber RR (2006) Assessment of contamination by polychlorinated biphenyls and aliphatic and aromatic hydrocarbons in sediments of the Santos and São Vicente Estuary System, São Paulo, Brazil. Mar Pollut Bull 52:1784–1832CrossRefGoogle Scholar
  9. Blaxhall PC (1972) The haematological assessment of the health of fresh water fish. A review of selected literature. J Fish Biol 4:593–604CrossRefGoogle Scholar
  10. Burton GA, Johnston EL (2010) Assessing contaminated sediments in the context of multiple stressors. Environ Toxicol Chem 29:2625–2643PubMedCrossRefGoogle Scholar
  11. Buruaem LM, de Castro IB, Hortellani MA, Taniguchi S, Fillmann G, Sasaki ST, Petti MAV, Sarkis JES, Bícego MC, Maranho LA, Davanso MB, Nonato EF, Cesar A, Costa-Lotufo LV, Abessa DMS (2013) Integrated quality assessment of sediments from harbour areas in Santos–São Vicente Estuarine System, Southern Brazil. Estuar Coast Shelf Sci 130:179–189. doi: 10.1016/j.ecss.2013.06.006 CrossRefGoogle Scholar
  12. Carmo CA, Abessa DMS, Machado-Neto JG (2011) Metais em águas, sedimentos e peixes coletados no Estuário de São Vicente, SP, Brasil. O Mundo da Saúde 35(1):64–70Google Scholar
  13. Cesar A, Choueri RB, Riba I, Morales-Caselles C, Pereira CDS, Santos AR, Abessa DMS, Delvalls TA (2007) Comparative sediment quality assessment in different littoral ecosystems from Spain (Gulf of Cadiz) and Brazil (Santos and São Vicente Estuarine System). Environ Int 33(4):429–435PubMedCrossRefGoogle Scholar
  14. Cesar A, Choueri RB, Gusso-Choueri PK, Pereira CDS (2012) Integrative approach for the environmental quality assessment of aquatic ecosystems: a critical review. Global J Environ Sci Techn 1:2–9Google Scholar
  15. Chaves PTC, Serenato A (1998) Diversidade de dietas na assembleia de linguados (Teleostei: Pleuronectiformes) do manguezal da Baía de Guaratuba, Paraná, Brasil. Rev Bras Oceanogr 46(1):61–68CrossRefGoogle Scholar
  16. Danion M, Le Floch S, Kanan R, Lamour F, Quentel C (2011) Effects of in vivo chronic hydrocarbons pollution on sanitary status and immune system in sea bass (Dicentrarchus labrax L.). Aquat Toxicol 105(3–4):300–311PubMedCrossRefGoogle Scholar
  17. Dexiang C, Ainsworth J (1991) Effect of temperature on the immune system of channel catfish (Ictalarus punctatus) II. Adaptation of anterior kidney phagocytes to 10 °C. Comp Biochem Physiol Part A 100(4):913–918CrossRefGoogle Scholar
  18. Diniz NM, Honorato CA (2012) Algumas alternativas para diminuir os efeitos do estresse em peixes de cultivo—revisão. Arq Ciên Vet Zool da UNIPAR 15(2):149–154Google Scholar
  19. Duthie GC, Tort L (1985) Effects of dorsal artic carrulation on the respiration and haematology of the Mediterranean dog-fish Segliorhinus canicula. Comp Biochem Physiol Part A 81:879–883CrossRefGoogle Scholar
  20. Ellis AE (1981) Inmunology of teleosts. In: Roberts RJ (ed) Fish pathology, 2nd edn. Bailliere Tindall, London, pp 103–117Google Scholar
  21. França JG, Ranzani-Paiva MJT, Lombardi J, Carvalho S, Filipak-Neto F, Oliveira-Ribeiro CA (2013) Toxic effect of potassium permanganate on Oreochromis niloticus based on hematological parameters and biomarkers of oxidative stress. Int J Fish Aquacult 5(1):1–6Google Scholar
  22. Hortellani MA, Sarkis JES, Abessa DMS, Souza ECPM (2008) Avaliação da contaminação por elementos metálicos dos sedimentos do estuário Santos–São Vicente. Quim Nova 31(1):10–19CrossRefGoogle Scholar
  23. Houston AH (1990) Blood and circulation. In: Schreck C, Moyle B (eds) Methods in fish biology. American Fisheries Society, Bethesda (MD), pp 273–334Google Scholar
  24. Hrubec TC, Smith SA (1998) Hematology of fish. In: Feldman BF, Zinkl JG, Jain NC (eds) Schalm’s veterinary hematology, 5th edn. W.W. Lippincott, Sydney, Australia, pp 1120–1125Google Scholar
  25. John PJ (2007) Alteration of certain blood parameters of freshwater teleost Mystus vittatus after chronic exposure to Metasystox and Sevin. Fish Physiol Biochem 33(1):15–20CrossRefGoogle Scholar
  26. Kirschbaum AA, Seriani R, Pereira CDS, Assunção A, Abessa DMS, Rotundo MM, Ranzani-Paiva MJ (2009) Citogenotoxicity biomarkers in fat sook Centropomus parallelus from Cananeia and São Vicente estuaries, SP, Brazil. Genet Mol Biol 32(1):151–154PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kuniyoshi LS, Braga ES (2011) Cytogenetic disruption in fishes as bioindicator of the environmental quality in two estuarine systems under different exposition to anthropogenic influences. Safety Health Environ World Congress 25(28):93–96Google Scholar
  28. Kurteshi K, Letaj K (2013) Assessment of the piscine micronucleus test as an in situ biological indicator of fungicide contaminant effects. J Chem Biol Phys Sci 3(2):1263–1267Google Scholar
  29. Lamparelli ML, Costa MP, Prosperi VA, Bevilacquia JE, Araujo RPA, Eysink GGL, Pompeia S (2001) Sistema Estuarino de Santos e São Vicente. Relatório Técnico CETESB, São Paulo, SP, 178p. Available at. (accessed in November 20th, 2013)
  30. Maranho LA, Pereira CDS, Choueri RB, Cesar A, Gusso-Choueri PK, Torres RJ, Abessa DMS, Morais RD, Mozeto AA, DelValls TA, Martín-Díaz ML (2012) The application of biochemical responses to assess environmental quality of tropical estuaries: field surveys. J Environ Monitor 14:2608–2615CrossRefGoogle Scholar
  31. Martins CC, Bícego MC, Mahiques MM, Figueira RCL, Tessler MG, Montone RC (2010) Depositional history of sedimentary linear alkylbenzenes (LABs) in a large South American industrial coastal area (Santos Estuary, Southeastern Brazil). Environ Pollut 158:3355–3364PubMedCrossRefGoogle Scholar
  32. Massar B, Dey S, Barua R, Dutta K (2012) Microscopy and microanalysis of hematological parameters in common carp, Cyprinus carpio, inhabiting a polluted lake in North East India. Microsc Microanal 18:1077–1087PubMedCrossRefGoogle Scholar
  33. Medeiros PM, Bícego MC (2004) Investigation of natural and anthropogenic hydrocarbon inputs in sediments using geochemical markers. I. Santos, SP—Brazil. Mar Pollut Bull 49:761–769PubMedCrossRefGoogle Scholar
  34. Moore MN (1992) Molecular cell pathology of pollutant-induced liver injury in flatfish: use of fluorescent probes. Mar Ecol Progr Ser 91:127–133CrossRefGoogle Scholar
  35. Moore MN, Evans B (1992) Detection of ras oncoprotein in liver cells of flatfish (dab) from a contaminated site in the North Sea. Mar Environ Res 34:33–38CrossRefGoogle Scholar
  36. Munroe TA (2007) Tropical flatfish fisheries. In: Gibson RN (ed) Flatfishes: biology and exploitation. Blackwell Science Ltd, Oxford, UK. doi: 10.1002/9780470995259.ch13 Google Scholar
  37. Normann CABM, Moreira JCF, Cardoso VV (2008) Micronuclei in red blood cells of armored catfish Hypostomus plecotomus exposed to potassium Dichromate. African J Biotechnol 7(7):893–896Google Scholar
  38. Ogbulie JN, Okpokwasili GC (1999) Haematological and histological responses of Clarias gariepinus and Heterobranchus bidon salis to some bacterial disease in Rivers State, Nigeria. J Nat Sci Found Sri Lanka 27:1–16Google Scholar
  39. Örün I, Dörücü M, Yazlak H (2003) Hematological parameters of three cyprinid fish species from Karakaya Dam lake, Turkey. OnLine J Biol Sci 3(3):320–328CrossRefGoogle Scholar
  40. Osman AG, Abuel-Fadl KY, Kloas W (2012) In situ evaluation of the genotoxic potential of the river Nile: II. Detection of DNA strand-breakage and apoptosis in Oreochromis niloticus (Linnaeus, 1758) and Clarias gariepinus (Burchell, 1822). Mutat Res 747(1):14–21PubMedCrossRefGoogle Scholar
  41. Pereira CDS, Martín-Díaz ML, Catharino MGM, Cesar A, Choueri RB, Taniguchi S, Abessa DMS, Bícego MC, Vasconcellos MBA, Bainy ACD, Sousa ECPM, Delvalls TA (2012) Chronic contamination assessment integrating biomarkers’ responses in transplanted mussels—a seasonal monitoring. Environ Toxicol 27:257–267PubMedCrossRefGoogle Scholar
  42. Polak-Juszczak L (2012) Bioaccumulation of mercury in the trophic chain of flatfish from the Baltic Sea. Chemosphere 89(5):585–591PubMedCrossRefGoogle Scholar
  43. Ranzani-Paiva MJT, Silva-Souza A (2004) Hematologia de peixes Brasileiros. In: Ranzani-Paiva MJT, Takemoto RM, Lizama MAP (eds) Sanidade de organismos aquáticos. Varela, São Paulo, Brazil, pp 89–120Google Scholar
  44. Riba I, Casado-Martínez C, Forja JM, Delvalls TA (2004) Sediment quality in the Atlantic coast of Spain. Environ Toxicol Chem 23:271–282PubMedCrossRefGoogle Scholar
  45. Rosenfeld G (1947) Corante pancrômico para hematologia e citologia clínica. Nova combinação dos componentes do May-Grünwald e do Giemsa num só corante de emprego rápido. Mem Instit Butantan 20:329–334Google Scholar
  46. Rybakovas A, Baršiene J, Lang T (2009) Environmental genotoxicity and cytotoxocity in the offshore zones of the Baltic and the North Seas. Mar Environ Res 68:246–256PubMedCrossRefGoogle Scholar
  47. Sampaio AFP, Mateus M, Berzin G (2008) A modelling approach to the study of faecal pollution in the Santos Estuary. In: Neves R, Baretta JW, Mateus M (eds) Perspectives on integrated coastal zone management in South America. IST Press, Lisboa, Portugal, pp 425–434Google Scholar
  48. Seriani R, Ranzani-Paiva MJT (2012) Alterações hematológicas em peixes: aspectos fisiopatológicos e aplicações em ecotoxicologia aquática, vol 1. In: Silva-Souza AT, Lizama MAP, Takemoto RM, (Eds). Alterações hematológicas em peixes: aspectos fisiopatológicos e aplicações em ecotoxicologia aquática. 1ªed. Massoni, Maringá, pp 221–242Google Scholar
  49. Seriani R, Abessa DMS, Kirschbaum AA, Pereira CDS, Romano P, Ranzani-Paiva MJT (2011) Relationship between water toxicity and hematological changes in Oreochromis niloticus. Braz J Aq Sci Technol 15(2):47–53Google Scholar
  50. Seriani R, Abessa DMS, Pereira CDS, Kirschbaum AA, Assunção A, Ranzani-Paiva MJT (2013) Influence of seasonality and pollution on the hematological parameters of the estuarine fish Centropomus parallelus. Braz J Oceanography 61:105–111CrossRefGoogle Scholar
  51. Stentiford GD, Viant MR, Ward DG, Johnson PJ, Martin A, Wenbin W, Cooper HJ, Lyons BP, Feist SW (2005) Liver tumors in wild flatfish: a histopathological, proteomic, and metabolomic study. OMICS 9(3):281–299PubMedCrossRefGoogle Scholar
  52. Tavares-Dias M, Moraes FR (2004) Hematologia de peixes teleósteos, 1st edn. Villimpress Complexo Gráfico, Ribeirão Preto, p 144Google Scholar
  53. Tavares-Dias M, Monteiro AMC, Affonso EG, Amaral KDS (2011) Weight–length relationship, condition factor and blood parameters of farmed Cichla temensis Humboldt, 1821 (Cichlidae) in central Amazon. Neotrop Ichthyol 9(1):113–119CrossRefGoogle Scholar
  54. Vázquez GR, Guerrero GA (2007) Characterization of blood cells and hematological parameters in Cichlasoma dimerus (Teleostei, Perciformes). Tissue Cell 39:151–160. doi: 10.1016/j.tice.2007.02.004 CrossRefGoogle Scholar
  55. Wepener V, Van Vuren JH, Dupreez HH (1992) Effect of manganese and iron at a neutral and acid pH on the hematology of the banded Tilapia (Tilapia sparrmani). Bull Environ Contam Toxicol 49(4):613–619PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Lílian R. G. B. Prado
    • 1
  • Cristiane Felix
    • 1
  • Denis M. S. Abessa
    • 2
  • Lucas M. Buruaem
    • 3
  • Laís D. Abujamara
    • 4
  • Aline A. Kirschbaum
    • 5
  • Gabriela C. R. Turatti
    • 1
  • Maria J. T. Ranzani-Paiva
    • 6
  • Aristides T. Correia
    • 7
  • Robson Seriani
    • 1
    • 7
    Email author
  1. 1.Universidade Paulista (UNIP)Campus Paraíso. R. VergueiroSão PauloBrazil
  2. 2.Campus Experimental do Litoral PaulistaUniversidade Estadual Paulista (UNESP)São VicenteBrazil
  3. 3.Instituto de Ciências do Mar (LABOMAR-UFC)Universidade Federal do CearáFortalezaBrazil
  4. 4.Universidade Santa Cecília (UNISANTA)SantosBrazil
  5. 5.Instituto OceanográficoUniversidade de São PauloSão PauloBrazil
  6. 6.Instituto de PescaSão PauloBrazil
  7. 7.Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil

Personalised recommendations