Comparative Clinical Pathology

, Volume 23, Issue 3, pp 725–733

Role of serum pro-hepcidin and GSTM1 and GSTT1 null polymorphisms for estimation of the risk of myocardial siderosis in children and “young adults” with β-thalassemia major

  • Ivan Chakarov
  • Tatyana Vlaykova
  • Emil Slavov
  • Rumen Marinov
  • Petrana Chakarova
Original Article

Abstract

This study aims to evaluate the serum pro-hepcidin level in β-thalassemia patients, to clarify its relation with serum level of ferritin and to assess the possible role of null polymorphisms of glutathione S-transferase genes, GSTM1 and GSTT1, for susceptibility to β-thalassemia and myocardial siderosis. The serum level of pro-hepcidin was assessed in 31 patients [16 children (52 %) and 15 young adults (48 %)] with β-thalassemia and nine healthy individuals [four children (44 %) and five young adults (56 %)] applying ELISA method. Genotyping for the null polymorphisms of GSTM1 and GSTT1 was performed successfully by multiplex PCR in 17 patients and in 40 healthy individuals, which were enrolled in the case–control study for assessment of the role of these polymorphisms as risk factors for β-thalassemia. The mean serum level of pro-hepcidin in patients did not differ significantly (159.12 ± 70.12 ng/ml) from that in controls (144.64 ± 53.30 ng/ml). We found a significant positive correlation with the serum ferritin (R = 0.371, p = 0.039). In addition, there was an association between the serum pro-hepcidin and the type of chelating therapy. The frequency of GSTT1 null genotypes was significantly higher in patients than in controls (0.29 vs. 0.07, p = 0.025). We observed tendencies for a higher serum ferritin and lower value of ejection fraction of the left ventricle (EFLV) of the patients carrying GSTT1 null genotypes than those with non-null GSTT1 genotypes. The serum levels of pro-hepcidin is not the most precise markers of iron overload and organ dysfunction, but it could be considered as a relatively good alternative of the serum ferritin as an index of iron stores. In addition, we suggest that GSTT1 null genotype could be considered as a predisposing factor for β-thalassemia, myocardial siderosis, and dysfunction in patients with this disease.

Keywords

β-thalassemia GSTT1 GSTM1 Gene polymorphisms Hepcidin Iron overload 

References

  1. Andonova IE, Sarueva RB, Horvath AD, Simeonov VA, Dimitrov PS, Petropoulos EA, Ganev VS (2004) Balkan endemic nephropathy and genetic variants of glutathione S-transferases. J Nephrol 17(3):390–398PubMedGoogle Scholar
  2. Ball AM, Sole MJ (1998) Oxidative stress and the pathogenesis of heart failure. Cardiol Clin 16(4):665–675PubMedCrossRefGoogle Scholar
  3. Balla J, Vercellotti GM, Nath K, Yachie A, Nagy E, Eaton JW, Balla G (2003) Haem, haem oxygenase and ferritin in vascular endothelial cell injury. Nephrol Dial Transplant 8(18):8–12CrossRefGoogle Scholar
  4. Beckman G, Lundgren E, Tarnvik A (1973) Superoxide dismutase isozymes in different human tissues, their genetic control and intracellular localization. Hum Hered 23(4):338–345PubMedCrossRefGoogle Scholar
  5. Borgna-Pignatti C, Rugolotto S, De Stefano P, Zhao H, Cappellini MD, Del Vecchio GC, Romeo MA, Forni GL, Gamberini MR, Ghilardi R, Piga A, Cnaan A (2004) Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica 89(10):1187–1193PubMedGoogle Scholar
  6. Camberlein E, Zanninelli G, Detivaud L, Lizzi AR, Sorrentino F, Vacquer S, Troadec MB, Angelucci E, Abgueguen E, Loreal O, Cianciulli P, Lai ME, Brissot P (2008) Anemia in beta-thalassemia patients targets hepatic hepcidin transcript levels independently of iron metabolism genes controlling hepcidin expression. Haematologica 93(1):111–115PubMedCrossRefGoogle Scholar
  7. Cotton SC, Sharp L, Little J, Brockton N (2000) Glutathione S-transferase polymorphisms and colorectal cancer: a HuGE review. Am J Epidemiol 151(1):7–32PubMedCrossRefGoogle Scholar
  8. Dimov D, Vlaykova T, Shazie S, Ilieva V (2008) Investigation of GSTP1, GSTM1 and GSTT1 gene polymorphisms and susceptibility to COPD. Trakia J Sci 6(4):1–8Google Scholar
  9. Dimov D, Kurzawski M, Lapczuk J, Wajda A, Ilieva V, Koychev A, Prakova G, Maximov V, Dimitrov V, Drozdzik M and Vlaykova T (2011) IL6-174G > C and TNFA-308G > A polymorphisms in Bulgarian patients with COPD and Bronchial asthma. Allergy, Asthma and Immunology: from Genes to Clinical Application: Proceedings of the Iv World Asthma and Copd Forum and Xvi International Congress on Rehabilitation in Medicine and Immunorehabilitation. 40128 Bologna, Medimond S R L:73–78Google Scholar
  10. Doroshow JH, Locker GY, Myers CE (1980) Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J Clin Invest 65(1):128–135PubMedCentralPubMedCrossRefGoogle Scholar
  11. Ganz T (2006) Hepcidin and its role in regulating systemic iron metabolism. Hematol Am Soc Hematol Educ Program :29–35Google Scholar
  12. Ganz T (2007) Molecular control of iron transport. J Am Soc Nephrol 18(2):394–400PubMedCrossRefGoogle Scholar
  13. Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M (2008) Immunoassay for human serum hepcidin. Blood 112(10):4292–4297PubMedCrossRefGoogle Scholar
  14. Harries LW, Stubbins MJ, Forman D, Howard GC, Wolf CR (1997) Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 18(4):641–644PubMedCrossRefGoogle Scholar
  15. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88PubMedCrossRefGoogle Scholar
  16. Hershko C, Konijn AM, Link G (1998) Iron chelators for thalassaemia. Br J Haematol 101(3):399–406PubMedCrossRefGoogle Scholar
  17. Hershko C, Abrahamov A, Konijn AM, Breuer W, Cabantchik IZ, Pootrakul P, Link G (2003) Objectives and methods of iron chelation therapy. Bioinorg Chem Appl :151–168Google Scholar
  18. Kattamis A, Papassotiriou I, Palaiologou D, Apostolakou F, Galani A, Ladis V, Sakellaropoulos N, Papanikolaou G (2006) The effects of erythropoetic activity and iron burden on hepcidin expression in patients with thalassemia major. Haematologica 91(6):809–812PubMedGoogle Scholar
  19. Kemna EH, Tjalsma H, Willems HL, Swinkels DW (2008) Hepcidin: from discovery to differential diagnosis. Haematologica 93(1):90–97PubMedCrossRefGoogle Scholar
  20. Koliaraki V, Marinou M, Vassilakopoulos TP, Vavourakis E, Tsochatzis E, Pangalis GA, Papatheodoridis G, Stamoulakatou A, Swinkels DW, Papanikolaou G, Mamalaki A (2009) A novel immunological assay for hepcidin quantification in human serum. PLoS One 4(2):24CrossRefGoogle Scholar
  21. Madani H, Rahimi Z, Manavi-Shad M, Mozafari H, Akramipour R, Vaisi-Raygani A, Rezaei M, Malek-Khosravi S, Shakiba E, Parsian A (2011) Plasma lipids and lipoproteins in children and young adults with major beta-thalassemia from western Iran: influence of genotype. Mol Biol Rep 38(4):2573–2578PubMedCrossRefGoogle Scholar
  22. Mak S, Newton GE (2001) The oxidative stress hypothesis of congestive heart failure: radical thoughts. Chest 120(6):2035–2046PubMedCrossRefGoogle Scholar
  23. Matsumoto M, Tsujino T, Lee-Kawabata M, Naito Y, Akahori H, Sakoda T, Ohyanagi M, Tomosugi N, Masuyama T (2010) Iron regulatory hormone hepcidin decreases in chronic heart failure patients with anemia. Circ J 74(2):301–306PubMedCrossRefGoogle Scholar
  24. McIlwain CC, Townsend DM, Tew KD (2006) Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 25(11):1639–1648PubMedCrossRefGoogle Scholar
  25. Muncie HL Jr, Campbell J (2009) Alpha and beta thalassemia. Am Fam Physician 80(4):339–344PubMedGoogle Scholar
  26. Nemeth E, Ganz T (2006) Hepcidin and iron-loading anemias. Haematologica 91(6):727–732PubMedGoogle Scholar
  27. Olivieri NF (1999) The beta-thalassemias. N Engl J Med 341(2):99–109PubMedCrossRefGoogle Scholar
  28. Origa R, Satta S, Matta G, Galanello R (2008) Glutathione S-transferase gene polymorphism and cardiac iron overload in thalassaemia major. Br J Haematol 142(1):143–145PubMedCrossRefGoogle Scholar
  29. Papanikolaou G, Tzilianos M, Christakis JI, Bogdanos D, Tsimirika K, MacFarlane J, Goldberg YP, Sakellaropoulos N, Ganz T, Nemeth E (2005) Hepcidin in iron overload disorders. Blood 105(10):4103–4105PubMedCentralPubMedCrossRefGoogle Scholar
  30. Penkova-Radicheva M (2011) Comparative evaluation of iron overload in patients with chronic liver disease. Trakia J Sci 9(1):10–16Google Scholar
  31. Popov B, Georgieva S (2006) DNA analysis. Theory and techniques. Student manual. [in Bulgarian]. IK “Kota”, Stara Zagora, Bulgaria, p 165Google Scholar
  32. Sharma V, Kumar B, Saxena R (2009) Glutathione S-transferase gene deletions and their effect on iron status in HbE/beta thalassemia patients. Ann Hematol 89(4):411–414PubMedGoogle Scholar
  33. Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360(Pt 1):1–16PubMedCentralPubMedCrossRefGoogle Scholar
  34. Tanner MA, Galanello R, Dessi C, Smith GC, Westwood MA, Agus A, Pibiri M, Nair SV, Walker JM, Pennell DJ (2008) Combined chelation therapy in thalassemia major for the treatment of severe myocardial siderosis with left ventricular dysfunction. J Cardiovasc Magn Reson 10(1):12PubMedCentralPubMedCrossRefGoogle Scholar
  35. Vlaykova T, Miteva L, Gulubova M, Stanilova S (2007) Ile(105)Val GSTP1 polymorphism and susceptibility to colorectal carcinoma in Bulgarian population. Int J Color Dis 22(10):1209–1215CrossRefGoogle Scholar
  36. Vlaykova T, Gulubova M, Vlaykova D, Cirovski G, Yovchev Y, Dimov D, Chilingirov P (2009) Possible influence of GSTM1 and GSTT1 null genotype on the risk for development of sporadic colorectal cancer. Biotechnol Biotechnol Equip 23(1):1084–1089Google Scholar
  37. Voso MT, D’Alo F, Putzulu R, Mele L, Scardocci A, Chiusolo P, Latagliata R, Lo-Coco F, Rutella S, Pagano L, Hohaus S, Leone G (2002) Negative prognostic value of glutathione S-transferase (GSTM1 and GSTT1) deletions in adult acute myeloid leukemia. Blood 100(8):2703–2707PubMedCrossRefGoogle Scholar
  38. Wood RJ (2004) The iron-heart disease connection: is it dead or just hiding? Ageing Res Rev 3(3):355–367PubMedCrossRefGoogle Scholar
  39. Wu KH, Chang JG, Ho YJ, Wu SF, Peng CT (2006) Glutathione S-transferase M1 gene polymorphisms are associated with cardiac iron deposition in patients with beta-thalassemia major. Hemoglobin 30(2):251–256PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Ivan Chakarov
    • 1
  • Tatyana Vlaykova
    • 2
  • Emil Slavov
    • 3
  • Rumen Marinov
    • 4
  • Petrana Chakarova
    • 1
  1. 1.Department of Pediatrics, Medical FacultyTrakia UniversityStara ZagoraBulgaria
  2. 2.Department of Chemistry and Biochemistry, Medical FacultyTrakia UniversityStara ZagoraBulgaria
  3. 3.Department of Molecular Biology, Immunology and Medical Genetics, Medical FacultyTrakia UniversityStara ZagoraBulgaria
  4. 4.Clinic of PediatricsNational Center of Heart DiseasesSofiaBulgaria

Personalised recommendations