Advertisement

Fast Voltage Dynamics of Voltage–Conductance Models for Neural Networks

  • Jeongho Kim
  • Benoît PerthameEmail author
  • Delphine Salort
Article
  • 1 Downloads

Abstract

We present the conductance limit of the voltage–conductance model with random firing voltage when conductance dynamics are slower than the voltage dynamics. The result of the limiting procedure is a transport/Fokker–Planck equation for conductance variable with a non-linear drift which depends on the total firing rate. We analyze the asymptotic behavior of the limit equation under two possible rescalings which relate the voltage scale, the conductance scale and the firing rate. We provide the sufficient framework in which the limiting procedure can be rigorously justified. Moreover, we also suggest a sufficient condition on the parameters and firing distribution in the limiting conductance equation under which we are able to obtain a unique stationary state and its asymptotic stability. Finally, we provide several numerical illustrations supporting the analytic results.

Keywords

Voltage–conductance model Integrate-and-Fire Asymptotic behavior Neuron assemblies 

Mathematics Subject Classification

35Q92 35Q84 92B20 

Notes

Acknowledgements

BP has received funding from the European Research Council (ERC) under the European Union’s c innovation programme (Grant agreement no. 740623).

References

  1. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neural activity. J. Neurophysiol. 94, 3637–3642 (2005)CrossRefGoogle Scholar
  2. Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory spiking networks. J. Comput. Neurosci. 8, 183–208 (2000)CrossRefGoogle Scholar
  3. Brunel, N., Hakim, V.: Fast global oscillations in networks of integrate-and-fire neurons with long firing rates. Neural Comput. 11, 1621–1671 (1999)CrossRefGoogle Scholar
  4. Cañizo, J.A., Yoldaş, H.: Asymptotic behaviour of neuron population models structured by elapsed-time. Nonlinearity 32, 464–495 (2019)MathSciNetCrossRefGoogle Scholar
  5. Cáceres, M.J., Carrillo, J.A., Perthame, B.: Analysis of nonlinear noisy integrate and fire neuron models: blow-up and steady states. J. Math. Neurosci. 1, 7 (2011)MathSciNetCrossRefGoogle Scholar
  6. Cáceres, M.J., Carrillo, J.A., Tao, L.: A numerical solver for a nonlinear Fokker–Planck equation representation of neuronal network dynamics. J. Comput. Phys. 230, 1084–1099 (2011)MathSciNetCrossRefGoogle Scholar
  7. Cai, D., Tao, L., Rangan, A.V., McLaughlin, D.W.: Kinetic theory for neuronal network dynamics. Commun. Math. Sci. 4, 97–127 (2006)MathSciNetCrossRefGoogle Scholar
  8. Cai, D., Tao, L., Shelley, M., McLaughlin, D.W.: An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. PNAS 101, 7757–7762 (2004)CrossRefGoogle Scholar
  9. Carrillo, J.A., Perthame, B., Salort, D., Smets, D.: Qualitative properties of solutions for the noisy integrate and fire model in computational neuroscience. Nonlinearity 28, 3365–3388 (2015)MathSciNetCrossRefGoogle Scholar
  10. Chevallier, J., Càceres, M.J., Doumic, M., Reynaud-Bouret, P.: Microscopic approach of a time elapsed neural model. Math. Models Methods Appl. Sci. 25, 2669–2719 (2015)MathSciNetCrossRefGoogle Scholar
  11. Chiani, M., Dardari, D., Simon, M.K., Cooper, G.: New exponential bounds and approximations for the computation of error probability in fading channels. IEEE Trans. Wirel. Commun. 2, 840–845 (2003)CrossRefGoogle Scholar
  12. Dumont, G., Henry, J.: Synchronization of an excitatory integrate-and-fire neural network. Bull. Math. Biol. 75, 629–648 (2013)MathSciNetCrossRefGoogle Scholar
  13. Fourcaud, N., Brunel, N.: Dynamics of the firing probability of noisy integrate-and-fire neurons. Neural Comput. 14, 2057–2110 (2002)CrossRefGoogle Scholar
  14. Fournier, N., Perthame, B.: Monge–Kantorovich distance for PDEs: the coupling method. Preprint, hal-02080155 (2019)Google Scholar
  15. Mischler, S., Weng, Q.: Relaxation in time elapsed neuron network models in the weak connectivity regime. Acta Appl. Math. 157, 45–74 (2018)MathSciNetCrossRefGoogle Scholar
  16. Pakdaman, K., Perthame, B., Salort, D.: Adaptation and fatigue model for neuron networks and large time asymptotics in a nonlinear fragmentation equation. J. Math. Neurosci. 4, 14 (2014)MathSciNetCrossRefGoogle Scholar
  17. Perthame, B., Salort, D.: On a voltage–conductance kinetic system for integrate and fire neural networks. Kinet. Relat. Models 6, 841–864 (2013)MathSciNetCrossRefGoogle Scholar
  18. Perthame, B., Salort, D.: Derivation of an integrate and fire equation for neural networks from a voltage–conductance kinetic model. Commun. Math. Sci. 17, 1193–1211 (2019)CrossRefGoogle Scholar
  19. Rangan, A.V., Kovacic, G., Cai, D.: Kinetic theory for neuronal networks with fast and slow excitatory conductances driven by the same spike train. Phys. Rev. E 77, 041915 (2008)MathSciNetCrossRefGoogle Scholar
  20. Sirovich, L., Omurtag, A., Lubliner, K.: Dynamics of neural populations: stability and synchrony. Netw. Comput. Neural Syst. 17, 3–29 (2006)CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Matemática 2020

Authors and Affiliations

  • Jeongho Kim
    • 1
  • Benoît Perthame
    • 2
    Email author
  • Delphine Salort
    • 3
  1. 1.Department of Mathematical SciencesSeoul National UniversitySeoulKorea
  2. 2.Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis LionsParisFrance
  3. 3.Sorbonne Université, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, UMR 7238ParisFrance

Personalised recommendations