Robust Heteroclinic Tangencies
Article
First Online:
- 17 Downloads
Abstract
We construct diffeomorphisms in dimension \(d\ge 2\) exhibiting \(C^1\)-robust heteroclinic tangencies.
Keywords
Folding manifolds Robust equidimensional tangencies Robust heterodimensional tangenciesNotes
Acknowledgements
We are grateful to Artem Raibekas for discussions and helpful suggestions. During the preparation of this article PB was supported by MTM2017-87697-P from Ministerio de Economía y Competividad de España and CNPQ-Brasil. SP were partially supported by CMUP (UID/MAT/00144/2019), which is funded by FCT with national (MCTES) and European structural funds through the programs FEDER, under the partnership agreement PT2020. SP also acknowledges financial support from a postdoctoral grant of the project PTDC/MAT-CAL/3884/2014
References
- Abraham, R., Smale, S.: Nongenericity of \(\Omega \)-stability. In: Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., pp. 5–8 (1970)Google Scholar
- Asaoka, M.: Hyperbolic sets exhibiting \(C^1\)-persistent homoclinic tangency for higher dimensions. Proc. Amer. Math. Soc. 136, 677–686 (2008)MathSciNetCrossRefGoogle Scholar
- Barrientos, P.G., Raibekas, A.: Robust tangencies of large codimension. Nonlinearity 30, 4369–4409 (2017)MathSciNetCrossRefGoogle Scholar
- Barrientos, P.G., Raibekas, A.: Robust nongeneric unfoldings of cycles and tangencies. arXiv:1907.01089 (2019)
- Bonatti, C., Díaz, L.: Robust heterodimensional cycles and \(C^1\)-generic dynamics. J. Inst. Math. Jussieu 7, 469–525 (2008)MathSciNetCrossRefGoogle Scholar
- Bonatti, C., Díaz, L.J.: On maximal transitive sets of generic diffeomorphisms. Publ. Math., Inst. Hautes Étud. Sci. 96, 171–197 (2003)MathSciNetCrossRefGoogle Scholar
- Bonatti, C., Díaz, L.J.: Abundance of \(C^1\)-homoclinic tangencies. Trans. Amer. Math. Soc. 264, 5111–5148 (2012)CrossRefGoogle Scholar
- Díaz, L.J., Kiriki, S., Shinohara, K.: Blenders in centre unstable Hénon-like families: with an application to heterodimensional bifurcations. Nonlinearity 27, 353–378 (2014)MathSciNetCrossRefGoogle Scholar
- Díaz, L.J., Nogueira, A., Pujals, E.R.: Heterodimensional tangencies. Nonlinearity 19, 2543 (2006)MathSciNetCrossRefGoogle Scholar
- Díaz, L.J., Pérez, S.A.: Hénon-like families and blender-horseshoes at non-transverse heterodimensional cycles. Int. J. Bifurc. Chaos Appl. Sci. Eng. 29(3), 1930006 (2019)CrossRefGoogle Scholar
- Kiriki, S., Soma, T.: \(C^2\)-robust heterodimensional tangencies. Nonlinearity 25, 3277 (2012)MathSciNetCrossRefGoogle Scholar
- Mañé, R.: A proof of the \(C^1\) stability conjecture. Publications Mathématiques de L’Institut des Hautes Scientifiques 66, 161–210 (1987)CrossRefGoogle Scholar
- Newhouse, S.E.: The abundance of wild hyperbolic sets for diffeomorphisms. Publications Mathématiques de L’Institut des Hautes Scientifiques 50, 101–151 (1979)CrossRefGoogle Scholar
- Palis, J.: A differentiable invariant of topological conjugacies and moduli of stability. Asterisque 51, 335–346 (1978)MathSciNetzbMATHGoogle Scholar
- Robinson, C.: Stability, Symbolic Dynamics, and Chaos, 2nd edn. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1999) ISBN: 0-8493-8495-837-01Google Scholar
- Simon, C.P.: A 3-dimensional Abraham–Smale example. Proc. Amer. Math. Soc. 34, 629–630 (1972)MathSciNetzbMATHGoogle Scholar
- Smale, S.: Differentiable dynamical systems. Bulletin of the American MaAthematical Society 73, 747–817 (1967)MathSciNetCrossRefGoogle Scholar
- Williams, R.F.: The “\({\rm DA}\)” maps of Smale and structural stability. In: Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., pp. 329–334 (1970)Google Scholar
Copyright information
© Sociedade Brasileira de Matemática 2019